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Abstract. Reconstructing gene regulatory network (GRN) from time-
series expression data has become increasingly popular since time course
data contain temporal information about gene regulation. A typical mi-
croarray gene expression data contain expressions of thousands of genes
but the number of time samples is usually very small. Therefore, inferring
a GRN from such a high-dimensional expression data poses a major chal-
lenge. This paper proposes a tree based ensemble of random forests in a
multivariate auto-regression framework to tackle this problem. The effi-
cacy of the proposed approach is demonstrated on synthetic time-series
datasets and Saccharomyces cerevisiae (Yeast) microarray gene expres-
sion data with 9-genes. The performance is comparable or better than
GRN generated using dynamic Bayesian networks and ordinary differen-
tial equations (ODE) model.
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1 Introduction

A set of genes, transcription factors (regulators), mRNAs, and gene products
(protein) interact among themselves to control almost all biological activities
and form a gene regulatory network (GRN). Therefore, reverse engineering of
GRN from gene expression data becomes an important problem. Reconstruc-
tion of regulatory networks plays a vital role in understanding of complexity,
functionality and pathways of the biological systems and plays a crucial role
in developing novel drugs for disease. With recent advancements of microarray
technology and next generation sequencing, a vast amount of expression data



has been produced. Thereafter, developments of novel computational models to
infer the GRN from gene expression measurements have been more feasible.

Microarray technology enables us to gather both steady-state and time series
gene expression data. Gene regulatory interactions among genes are not instan-
taneous, but they are dynamic events which occur throughout a period of time
[1]. Therefore, time-series expression data are vital in studying the dynamics
of the underlying biological systems. A typical time series data contains only
a few time samples compared to the number of genes, and hence, inference of
regulatory interaction of large number of genes from a few time points is one of
the biggest challenges faced by computational biologists.

Several computational techniques have been proposed to infer GRN by using
time course gene expression data. Boolean networks are the simplest and earliest
models of gene networks [2, 3]. Some of biological characteristics of actual GRN
are illustrated by the Boolean network models [4]. On the other hand, ordinary
differential equations (ODE) [5] are able to describe dynamic changes of the
regulatory network and capture complex regulatory dependencies among the ex-
pression data. However, their major disadvantage is having a high-dimensional
parameter space. Therefore, they require a large amount of experimental data to
infer the accurate regulatory network. Dynamic Bayesian networks (DBN) based
models are also popular in reconstructing GRN as they are capable of learning
causal interactions among the temporal gene expressions [1],[6],[7]. Another ap-
proach is the usage of information theoretical measures such as mutual infor-
mation (MI) to model the time course expression data. TimeDelay-ARACNE
[8] is one of the recently proposed algorithms using MI among gene expressions.
Also, several linear multivariate vector auto-regression (MVAR) techniques such
as lasso regression, elastic net and ridge regression have been introduced in lit-
erature to infer GRN [9, 10].

However, the performance of GRN inference techniques is still poor because
the current approaches are unable to capture the complex regulatory interac-
tions among the genes and many of these approaches are incapable of handling
high-dimensional microarray expression data. Within this context, we propose
an effective approach to infer GRN from time-course expression data with en-
semble of random forest. Random forest method has become popular in handling
high-dimensional problems [11], [12], [13], [14]. Huynh-Thu et al initially applied
random forests technique to build GRN [15]. Their proposed method, namely
GENIE3, showed the significant improvement in accuracy of GRN inference and
it was the best performer in the DREAM4 In Silico Multifactorial challenge
[15]. However, experiments were only performed with steady-state gene expres-
sion data(static data). Also the structure of the GRN was not built, but only
provided the ranking of gene regulatory links. On the other hand, sparse lin-
ear regression based MVAR approaches has inherent limitations in modeling
non-linear regulations. In this paper, to tackle the limitation of these previous
approaches, we develop a random forests based MVAR approach to infer a GRN
from time-series gene expression data. Using variable importance criterion de-



rived from training random forest model and subsequently using adjusted R2, a
structure of GRN is obtained using time-series gene expression data.

The rest of the paper is organized in three sections. First, Section 2 describes
the inference of GRN from time-course expression data using the tree based
ensemble method of Random forests. Section 3 provides details on both synthetic
and real datasets, performance metrics used in the evaluation, present the results
and time complexity of the proposed approach. Finally, Section 4 concludes the
paper with a discussion on obtained results along with future research directions.

2 Method

Let (xjt )
q
j=1 be a vector containing the gene expressions of q genes at the tth

time point. Let x−j
t is a vector containing gene expressions at time t of all the

genes except gene j. By assuming that the expression level of given gene (j) at
next time point (t+ 1) is a function (gj) of the expression values of other genes
at current time (t), we can write

xjt+1 = gj(x
−j
t ) + εt,∀t (1)

where εt denotes the random noise. The static version of GRN inference with
random forest assumes that the expression value of each gene depends on ex-
pression values of other genes for a given experiment(k) [15]:

xjk = fj(x
−j
k ) + εk,∀k (2)

where x−j
k is a vector containing all static gene expression data except expres-

sion data of gene j in the kth experiment. The network inference procedure first
decomposes the problem of recovering network structure of q genes into q dif-
ferent sub-problems. The jth sub-problem is equivalent to finding regulators for
jth gene. Each sub problem has its own learning sample (LSj

T ) which is consists

of input-output pairs for gene, LSj
T = (x−j

t , xjt+1)
T−1

t=1
. Here, T denotes the total

number of time points in the time series. Each sub-problem can be solved by
finding an optimal function for gj that minimizes the square error loss between
the actual expression level and the predicted expression level by the function as
follows:

T−1∑
t=1

(xjt+1 − gj(x
−j
t ))2 (3)

Each of these sub-problems can be categorized as supervised regression prob-
lem [15]. Regression problem which is defined by Eq. (3) can be solved by con-
structing tree models such as regression trees [16]. Accuracy of the single tree
is further improved by ensemble methods where prediction outcomes of several
individual trees are merged. Ensemble methods provide a combine prediction by
considering all individual predictions in the ensemble. Therefore, the tree based
ensemble method of random forest [11] is suitable for solving above problem
because it can handle high dimensional expression data [13], and is capable of



learning non-linear relationships as well as dealing with interacting features [15].
So, each sub-problem is solved by building an ensemble consists of regression
trees using random forest method. On the other hand, proposed method can be
identified as another way of solving sparse autoregressive model where function
gj is assumed to be a linear function of the regression coefficients (β) [9, 10].

First step of the random forest is generation of bootstrap samples from the
initial input data. Then, each tree is constructed by using these samples. But
tree building process is little bit different than the normal process because at
each node, N numbers of predictors are randomly selected from the bootstrap
sample to determine the optimal split for the node. The value of N is the tuning
parameter because it determines the level of randomization of the trees. All the
trees of an ensemble are built by applying above process.

Function gj is learned from the learning sample LSj
T using random forest

ensemble. Following [15], weight for having a regulatory link from any gene i to
j (wi,j) are obtained by computing variable importance measure using following
equation:

I = #S.V ar(S)−#St.V ar(St)−#Sf .V ar(Sf ) (4)

where S indicates the input data sample that reach the node, # shows the car-
dinality of data sample, Sf and St shows the subset of samples out of input
data sample (S) that the test is false and true, respectively. For each subset of
samples (Sf and St), the variance of the target variable is indicate by V ar(.).
Variable importance measure provides an indication about the relevance of an
input variable for the prediction of the output. After that, regulatory links are
ranked based on their weights for each learning sample. Regulatory links that
have higher weights are more likely to be actual regulatory interactions. There-
fore, we apply adjusted coefficient of determination (Adjusted R2) which is given
by Eq. (5) to each sub problem to determine the actual regulators.

Adjusted coefficient of determination = 1− (1−R2)
n− 1

n− p− 1
(5)

where n denotes the size of the learning sample, p is the number of regressors
in the model and R2 is the coefficient of determination. In our case, n equals
to q. An important property of adjusted R2 is that when a regression variable
is added into the model , adjusted R2 increases if added variable improves the
prediction ability of the model, otherwise the value of adjusted R2 decreases
[17]. So, for each sub-problem, we add regulators into the model from highest
weight to lower one and each time the value of adjusted R2 is computed. If
added regulator increases adjusted R2, we consider it as an actual regulator. We
continue adding more regressor until adjusted R2 starts to decrease. This way,
we determine the actual regulators for each sub problem.

3 Experiments and Results

Several synthetic gene expression datasets were generated and used to evaluate
the performance of the proposed method. Many gene regulatory network infer-



ence studies with synthetic datasets were done using scale-free synthetic net-
works that were obtained using Barabasi-Albert model [18]. But in this study,
we used GeneNetWeaver (GNW) [19] software package to extract sub-networks
from global Escherichia coli (E. Coli) network. Sub-networks of having 10, 30, 50
and 100 genes were extracted from E. Coli network. Topology or the structure of
the gene regulatory network which has q number of genes is depicted by the con-
nectivity matrix M = {Mij}q×q where Mij = 1 for the presence of connection
between gene i and j, and Mij = 0 for the absence. These network topologies
were used in the section 3.1 to generate synthetic gene expression data. Other
than synthetic data, real time-course gene expression dataset were also used to
evaluate the performance of the proposed method.

3.1 Synthetic expression data generation

First-order multivariate vector autoregressive model (MVAR) [10],[9] is used
to generate synthetic time-series gene expression data. Sub-networks extracted
from GNW were used as network topologies in MVAR model to simulate the
expression data. Gene expression at time t were obtained by using the first
order MVAR model as follows:

xt = xt−1 ×Mweight + εt (6)

where xt = (xjt )
q
j=1 indicates the expressions of q number of genes at time t and

εt denotes the added Gaussian random noise to the gene expression at time t.
Matrix Mweight is obtained by assigning weights randomly to all the connection
(where Mij = 1) in the connectivity matrix M . These weights were assigned by
getting the values from uniform distribution on the interval [-1,-0.6] and [0.6,
1]. Two intervals are chosen to maintain the amount of negative and positive
weights nearly equal [10]. Gene expression vector at t = 0 (xt=0) is initialized by
obtaining the samples from the uniform distribution on the interval [0, 1] and
subsequent time points are simulated using Eq. (6). For each network topology,
three synthetic datasets which have 10, 30 and 50 time points were generated. For
each combination of genes and time points, 50 different datasets were generated.

3.2 Real Dataset

Performance evaluation of GRN inference techniques on real gene expression
data is more difficult because of lack of experimentally verified ground truth gene
networks. In this study, we choose an experimentally identified gene regulatory
network which is related to yeast Saccharomyces cerevisiae cell cycle [20]. This
real gene regulatory network is depicted in figure 1(a) and consists of 9 genes
(Fkh2, Swi4, Swi5, Swi6, Ndd1, Ace2, Cln3, Mbp1, Mcm1). Real time-series gene
expression data were obtained from Spellman [21] dataset. Spellman dataset
contains expression data of yeast cell cycle regulation. We selected time-course
gene expression data from cdc28 cell cycle arrest which consists of 17 time points.



3.3 Performance

We generated synthetic datasets using MVAR model with the network topolo-
gies which were extracted from GNW software. Therefore, true structure of ex-
tracted gene regulatory networks is known. Also in the real data, true structure
is available since we used an experimentally verified regulatory network. Hence,
we compared GRN which was inferred by the proposed random forest based
approach with the ground truth network to evaluate the performance. In syn-
thetic data, there were 50 time series datasets for each combination of genes and
time points, resulting in 50 inferred GRNs. Number of true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN) were computed
for each predicted network by comparing predicted network with ground truth
network. Then performance measures such as precision5, recall6, accuracy7 and
F-measure8 were calculated.

For both synthetic and real dataset, an ensemble of 1000 trees was con-
structed. The most important parameter of this method is the number of pre-
dictors which were selected randomly to find the best split in each node. This
parameter was set to

√
q, where q denotes the number of genes in the network.

Table 1 shows the performance of the proposed method with synthetic data.
In table 1, the mean and the standard deviation of each performance metric
over 50 times simulation are shown. The effectiveness of the proposed method
is also shown over real gene-expression data. In order to compare with existing
techniques, three techniques, namely the random forest static version, dynamic
Bayesian networks with Markov chain Monte Carlo (Dbmcmc software package)
[1],[22] and the ordinary differential equation based model (TSNI software pack-
age)[23] were applied to the same real dataset. All the packages were used with
the default settings according to their user manuals. Table 2 shows the perfor-
mance measures on real data. In figure 1(b), 1(c), 1(d) and 1(e), we illustrate
the gene network structures inferred from real data by the proposed method,
random forests static version, ODE and DBN methods respectively. In figure 1,
we used solid line to represent the true positive (TP) and dash line to represent
the false negatives (FN). False positives are not shown in figure 1, though they
were considered in calculating performance metrics in table 2.

3.4 Time complexity

Random forest algorithm has time complexity of O(TreeTotal ∗N ∗ T logT ) [15],
where TreeTotal represents the number of trees in the ensemble, T denotes the
number of time point in the learning sample and N denotes the number of genes
that are randomly chosen at each node during construction of each tree. The
proposed approach divides the infer of GRN with q number of gene into q number

5 Precision = TP
FP+TP

6 Recall = TP
FN+TP

7 Accuracy = TP+TN
TP+TN+FN+TP

8 F −measure = 2 × Precision×Recall
Precision+Recall



Table 1: The performance of the proposed method on synthetic data

Number of
genes

Number of
time points

Precision Recall Accuracy F-measure

10
10 0.40 ± 0.08 0.50 ± 0.10 0.80 ± 0.03 0.45 ± 0.09
30 0.58 ± 0.07 0.76 ± 0.09 0.88 ± 0.03 0.66 ± 0.08
50 0.65 ± 0.07 0.86 ± 0.08 0.90 ± 0.04 0.74 ± 0.07

30
10 0.17 ± 0.03 0.43 ± 0.07 0.86 ± 0.01 0.25 ± 0.04
30 0.32 ± 0.02 0.80 ± 0.05 0.90 ± 0.01 0.46 ± 0.03
50 0.36 ± 0.05 0.90 ± 0.04 0.91 ± 0.00 0.52 ± 0.02

50
10 0.14 ± 0.02 0.39 ± 0.04 0.87 ± 0.00 0.21 ± 0.02
30 0.24 ± 0.02 0.66 ± 0.07 0.89 ± 0.01 0.35 ± 0.04
50 0.28 ± 0.02 0.78 ± 0.05 0.90 ± 0.00 0.42 ± 0.03

100
10 0.11 ± 0.01 0.30 ± 0.04 0.90 ± 0.00 0.13 ± 0.02
30 0.14 ± 0.03 0.53 ± 0.03 0.91 ± 0.01 0.22 ± 0.04
50 0.19 ± 0.02 0.71 ± 0.01 0.93 ± 0.01 0.30 ± 0.02

Table 2: The Performance measures on real data

Method Precision Recall Accuracy F-measure

Random forests static ver-
sion

0.25 0.29 0.66 0.27

Random forests dynamic
version(proposed method)

0.33 0.40 0.70 0.36

TNSI 0.28 0.29 0.69 0.29

DBN-MCMC 0.26 0.38 0.70 0.30

of sub problems. For each sub problem, we computed a value of adjusted R2 for
all regulators from highest weight to lower one. Therefore, time complexity of
each sub problem became O(q∗TreeTotal∗N ∗T logT ). Since there are altogether
q number of sub problems, proposed approach has time complexity of O(q2 ∗
TreeTotal ∗N ∗ T logT ).

4 Discussion

Building GRN from time-series gene expression data is very important since
they contain temporal information about the underline regulatory interactions
among genes. In this paper, we have proposed an approach to build GRN using
ensemble of random forest. The proposed approach first divides the recovering of
regulatory network which is having q genes in to q different supervised regression
problems. Then each of these sub problems is solved by applying random forest
ensemble method. There are two main contributions of this paper. They are,
1) extend the work of [15] to infer GRN from time-series gene expression data



(a)

(b) (c)

(d) (e)

Fig. 1: The GRN identified in Yeast cell cycle and predicted network by various
methods. a) is the real GRN related to yeast cell cycle [20]; b) is the predicted
network by proposed approach; c) is the predicted network by Random forests
static version; d) is the predicted network by TSNI; e) is the predicted network
by Dbmcmc.

by developing random forest based MVAR approach and 2) introduce adjusted
coefficient of determination to construct the structure of GRN.



The results on synthetic data show that all performance metrics are improved
with increase in number of time points and are deteriorated with increase in
number of genes. The decrease in the performance of inferred network is due
to the inference of large number of false positives than false negatives. Further,
the effect of false negatives is corrected quickly than false positive effect with
the increased in number of time points in the proposed method. It can also
be seen that all the predicted gene networks have more than 80% of accuracy.
Figure 1(b) shows the predicted GRN on the real data by the proposed random
forest based approach and it is apparent that many true regulatory connections
have been identified. As shown in table 2, the proposed method shows better
performance on the real data compared to the Random forests static version,
DBN with MCMC and ODE method.

Experiments results on both synthetic data and real expression data on a
9-gene network in yeast show the effectiveness of proposed approach. On the
other hand, the proposed approach could be improved further. For example, in
this study, we assumed that only gene expressions affect the gene regulation. But
gene regulation also depends on other mechanisms such as histone modification
and transcription factor bindings. Chen et al [24] recently showed that accuracy
of DBN can be improved by integrating epigenetic data in to GRN inference.
As a future work, similar approaches of data integration with random forest
could improve the performance. The proposed approach divides the inference
of GRN with q gene into q number of sub-problems. Since each sub-problem
is independent of each other, another future work would be to parallelize all
these sub-problems to reduce the computation time. Last but not least, similar
to [25], the proposed method could be extended to model the time-delayed gene
regulations.
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