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Abstract. Gene Ontology (GO) provides a controlled vocabulary and
hierarchy of terms to facilitate the annotation of gene functions and
molecular attributes. Given a set of genes, a Gene Ontology Network
(GON) can be constructed from the corresponding GO annotations and
semantic relations among GO terms. Transitive rules can be applied to
GO semantic relations to infer transitive regulations among genes. Using
information content as a measure of functional specificity, a shortest
regulatory path detection algorithm is developed to identify transitive
regulations in GON. Since direct regulations may be overlooked during
the detection of gene regulations, gene functional similarities deduced
from GO terms are used to detect direct gene regulations. Both direct
and transitive regulations are then used to construct a Gene Regulatory
Network (GRN). The proposed approach is evaluated on seven E.coli
sub-networks extracted from an existing known GRN. Our approach was
able to detect the GRN with 85.77% precision, 55.7% recall, and 66.26%
F1-score averaged across all seven networks.

Keywords: gene ontology, gene regulatory network, transitive gene reg-
ulation, semantic similarity, functional similarity.

1 Introduction

Gene regulation denotes the cellular activity that arises when a set of genes
interact with one another. Gene regulations can be organized into a gene regula-
tory network (GRN), which provides insights into complex biological processes.
However, ground truths of biological regulatory networks are unknown in most
cases, so building a GRN that is accurate and biologically plausible remains an
open research problem in the field of functional genomics.

Gene Ontology (GO) provides a controlled vocabulary arranged in a hierarchy
of terms to facilitate the annotation of gene functions and molecular attributes.

⋆ to whom correspondence should be addressed.
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GO has been widely used for validating functional genomics experiments [1], [2].
In this paper, we present a method to build GRN that captures both direct and
transitive regulations based on GO. The semantic relations of these gene anno-
tation terms provide some evidence for gene regulations. Applying the transitive
rules of these semantic relations, we can also infer transitive gene regulations.

A transitive regulation is a regulation between two genes via one or more
transitive genes in the absence of a direct regulation [3]. For example, suppose
gene g1 regulates gene g2 directly and gene g2 is related to gene g3. Then since
there is no direct regulation between g1 and g3, if we can infer a regulatory
relation from g1 to g3, we say g1 transitively regulates g3 through transitive
gene g2. The vast majority of previous research has focused on finding direct
regulations between genes, using co-expressions [4]. In our approach, we use the
information content of GO terms to represent the functional specificity and in-
formation flow, thereby determining the most probable transitive regulations
between genes. Zhou et al. [3] linked genes of the same biological pathway based
on the transitive expression similarity among genes. They determine the transi-
tive co-expression genes by applying shortest path analysis on large-scale yeast
microarray expression data. Instead of finding the shortest path based on dis-
tance, we find the shortest path based not only on distance but also on GO
regulatory relations, which gives more reliable transitive regulations, as shown
in our experiments.

Semantic Similarity of gene annotations can provide some clues for direct
gene regulations. Cheng et al. [5] and Kustra et al. [6] incorporate gene similarity
scores from GO semantic similarity into gene expression data to cluster genes.
Franke et al. [4] assumed functional interactions among similar genes if they share
more GO terms, and incorporate microarray co-expression and protein-protein
interaction data to construct a human gene network. Similarly, in order to detect
direct regulations, we consider the functional similarity of genes based on their
semantic similarity. To better estimate the functional similarity score of gene
pairs, we modify the original term probabilities by taking into consideration the
chances of a term being annotated to both genes. Since these two GO methods
complement each other, we then propose a GO fusion method to combine both
direct and transitive regulations to generate the final GRN.

2 Methods

2.1 Gene Ontology Networks

A gene ontology (GO) is a controlled and structured biological vocabulary of
various gene terminologies and their inter-related functional characteristics. It
describes how gene products behave in a cellular context. The ontology covers
three domains: biological process (BP), molecular function (MF), and cellular
component (CC). BP is a collection of molecular events, MF defines gene func-
tions in the biological process, and CC describes gene locations within a cell.
A gene is associated with GO terms that describe the properties of its prod-
ucts (i.e., proteins). In our approach, only BP and MF terms are used since the
cellular component (CC) is not directly related to gene regulation.
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GO terms and their semantic relations are represented as a directed acyclic
graph (DAG) where vertices represent GO terms and direct edges the rela-
tions between GO terms. There are three defined semantic relations between
GO terms: is − a is used when one GO term is a subtype of another GO term,
part − of is used to represent part-whole relationship in the GO terms, and
regulate is used when the occurrence of one biological process directly affects the
manifestation of another process or quality [7]. LetR = {is − a, part − of , regulate}
denote the set of ontological relations. The GO can thus be represented as a hier-
archical directed acyclic graph, where each term is related to one or more terms
in the same or different domain. The GO has three roots at the topmost level:
BP, MF, and CC. Nodes/terms near the root of the DAG have broader functions
and are hence shared by many genes; leaf nodes/terms on the other hand convey
more specific biological functions.

GO annotation (GOA) is the process in which GO terms are annotated to
gene products. GOA data can be readily obtained from the GO annotation
database [8]. The GO hierarchical structure also allows annotators to assign
properties to genes or gene products at different levels, depending on the avail-
ability of information about an entity. In general, when inferring information
from a gene that is annotated by some hierarchical GO terms, biological func-
tions at the lower levels should be chosen as an inference base due to its more
specific and richer information content.

As such, a measure to filter the more informative GO terms at the lower levels
is clearly needed. A term in the GOA hierarchy that occurs less frequently is con-
sidered to be more informative as it has a more specialized function. To capture
this frequency-sensitive informativeness of GO terms, the information content
of the node was measured with respect to their annotations by [9]. Specifically,
the information content I(t) of a GO term t ∈ T is given by

I(t) = − log(p(t)) (1)

where p(t) = N(t)/N(root(t)) and root(t) ∈ {BP ,MF} is the GO root of term
t, N(t) is the number of occurrences of term t in the given GOA data. The
information content strongly correlates with the hierarchical depth of the term
with respect to the GO root. If the GO term is less frequent, it is usually located
at a deeper/lower level and therefore has a more specific function.

Consider a set G = {i}ni=1 of n genes with gene i associated to GO term-set

Ti. The total term-set T of all genes is given by T =
⋃I

i=1 Ti. Let r(t, t′) ∈ R
denote a GO relation between terms t, t′ ∈ T . All GO relations between terms
in the term-set T are represented as E = {r(t, t′) : t, t′ ∈ T , ∃ r(t, t′) ∈ R}. The
pair (T , E) thus constitute the GO network (GON).

2.2 GRNs from GO Regulatory Paths

Recall that in GON, regulate denotes the occurrence of one biological process
that directly affects the manifestation of another process or quality, e.g., process
t regulates process t′ means that if both processes occur, t always regulates t′.



4 Wenting Liu et al

Suppose gene i is annotated by GO term t and gene i′ is annotated by GO term
t′. If GO term t regulates term t′, then we can infer that gene i might regulate i′.
If this inference comes from more specific terms, gene i should regulate i′ with
high confidence. In our GRN inference procedure, we therefore choose the most
reliable regulate inference path. There are very few direct regulate relations in the
existing GO database, making it difficult to infer a GRN. As such, we propose
to induce transitive regulate relations among GO terms, from which we infer
a GRN based on both direct and transitive gene regulations derived from the
GON.

Consider the transitivity rule:

if ta
r1→ tb and tb

r2→ tc, then ta
r3→ tc (2)

where ta, tb, tc ∈ T and r1, r2, r3 ∈ R. Using rule deduction notation, the above
transitive relation can be written as r3 = r1 ∧ r2. According to GO database 1,
the following transitivity rules exist among the GO terms. For any r ∈ R =
{is − a, part − of , regulates}, the following four transitivity relations are valid.

r = r ∧ is − a (3)

r = is − a ∧ r (4)

regulates = regulates ∧ part − of (5)

part − of = part − of ∧ part − of (6)

Consider a path (tj)
J
j=0 in GON where t0 and tJ denote the source and des-

tination terms, respectively; and r(tj , tj+1) is the parent-child relation between
parent term tj and child term tj+1. Using parent-child relations { r(tj , tj+1) }

J−1
j=1 ,

each term tj can induce a relation from the source term. Denote path πJ =
(tj)

J
j=0, and let r(πJ ) = r(t0, tJ ) denote the inferred relation along path πJ by

applying transitive rules to parent-child relations, we have

r(πj) = r(πj−1) ∧ r(tj−1, tj). (7)

We then assign a confidence score function σ(π) for each inferred path π by
considering both the number of steps and the information content of the terms
along the inferred paths. The confidence score σ(π) should give preference to
paths with fewer inference steps and more informative terms, defined as

σ(πj) = σ(πj−1) +∆r(tj−1,tj)(tj−1, tj) (8)

where σ(πj) is the score assigned to the inferred path πj from source t0 to term
tj ∈ T and ∆r(t,t′)(t, t

′) is the score assigned to relation r(t, t′) ∈ R between
terms t, t′ ∈ T .

The cost for deducing a relation between two terms should facilitate the
selection of the most informative inferred path. The semantic similarity of GO
terms based on their information content, i.e., Lin’s semantic similarity measure

1 http://www.geneontology.org/GO.ontology.relations.shtml
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[10] and Jiang’s semantic distance [11], can be used to define the cost of deducing
a relation between two terms. For example, ∆r(t,t′)(t, t

′) = 1 − S(t, t′), where
S(t, t′) is the semantic similarity of terms t, t′. Jiang’s semantic distance can also
be directly used as the cost ∆r(t,t′)(t, t

′).

When there exists no relation r(t, t′), the cost is ∆r(t,t′)(t, t
′) = ∞, elimi-

nating empty relations. Thus, the path with the minimum score σπ is the path
inferred collectively using the fewest number of steps and along the most in-
formative terms, i.e., the most reliable inferred path. Dijkstra’s shortest path
algorithm can be used to find the shortest inferred path. If an inferred path ends
with the deduced relation regulate at the destination, then there is a regulatory
path (RP) between the source and the destination.

We propose an algorithm to detect the most reliable RP between two terms
s, d ∈ T by using the deduced scores in Dijkstra’s shortest path algorithm [12].
For each node v ∈ T , we use an indicator vector to represent the deduced
relations rv, and σ(rv, v) is a matrix to record the current minimum distance/cost
to deduce rv at term v along path π(rv, v).

Initially, the source term is assigned an is − a relation as it does not change
the first transitive relation. Subsequently for each R ∈ R, SR denotes the
unvisited node set with current relation R, and we iteratively choose u∗ =
argminu∈SR

{σ(R, u)} as the starting node of the following iteration. At each
inference step, if σ(ru∗ , u∗) + ∆r(u∗,v)(u

∗, v) < σ(rv, v), we update the cur-
rent deduced score for the three relations by rv = ru∗ ∧ r(u∗, v), σ(rv, v) =
σ(ru∗ , u∗) + ∆r(u∗,v)(u

∗, v). The iteration stops when all SR are empty. Upon
termination, if σ(regulate, d) < +∞, π(regulate, d) is the most-reliable RP from
term s to d, otherwise no RP from term s to d exists. Given a source term and
target term, Algorithm 1 finds the most reliable RP.

Algorithm 1 Finding the most-reliable Regulatory Path (RP) between two GO
terms

Step 0. Given source term s, target term d, term set T , and inference cost matrix
∆

Step 1. Set rs(is − a) = 1; ∀u ∈ T , R ∈ R. Set SR = T , π(R, u) = {u}, σ(R, u) =
+∞ except σ(is − a, s) = 0
Step 2. For R ∈ R, If SR 6= {}

Choose u∗ = argminu∈SR
{σ(R, u)}, set SR = SR\{u

∗}
If σ(R, u∗) 6= +∞: for each (u∗, v) ∈ E , if σ(ru∗ , u∗)+∆r(u∗,v)(u

∗, v) < σ(rv, v)
Update rv = ru∗ ∧ r(u∗, v), σ(rv, v) = σ(ru∗ , u∗) +∆r(u∗,v)(u

∗, v), π(rv, v) =
{u∗} ∪ π(rv, v)
Step 3. If σ(regulate, d) < +∞, return π(regulate, d) as the most-reliable RP

Up till now, we have only determined the most reliable RP between GO
terms. For genes i, i′ with GO annotations Ti, Ti′ respectively, if there exists a RP
from t ∈ Ti to t′ ∈ Ti′ , we can infer that gene i regulates gene i′. The confidence
score for this inferred path is assigned by the minimum regulatory path score of



6 Wenting Liu et al

all RPs (if any): C(i, i′) = min{σ(π(t, t′))|r(π(t, t′)) = regulate}. Then we can
construct a GRN with confidence score based on direct and transitive regulate

relations among the GO terms.

2.3 Complementary GRNs from Functional Similarity

According to the transitive rules, if no regulate path exists between two GO
terms, then no regulate relation can be deduced. As a result, the Regulatory
Path method cannot infer a GRN when there exists few regulate relations among
the GO terms in the GOA data.

Since Gene Ontology (GO) provides a standard vocabulary of functional
terms and allows for coherent annotation of gene products, gene products are
functionally similar if they have comparable molecular functions and are in-
volved in similar biological processes. Hence, the more similar genes are, the more
likely they belong to the same biological pathway, which involves gene interac-
tions/regulations. We can thus assess the functional similarity of gene products
by comparing sets of GO terms, and then recover the direct regulations missing
from the GO Regulate Paths method based only on genetic functional similarity.

Functional Similarity of Genes based on Semantic Similarity of GO

annotations Semantic similarity has been previously proposed to compare con-
cepts within an ontology. It can evaluate the specificity of a GO term’s underlying
concept in a given GO annotation. There are three popular semantic similarity
measures: Resnik similarity [13] measures the semantic similarity of two terms
via the information content of their lowest common ancestors (LCA); Lin’s sim-
ilarity [10] assesses how close the terms are to their LCA, but it does not take
into account the level of detail of the LCA; simRel [14] combined the seman-
tic similarity of Lin and Resnik, and it takes into account how close terms are
to their LCA as well as how detailed the LCA is, i.e., it distinguishes between
generic and specific terms. For each term t ∈ T , let p(t) be the probability of
finding t’s descendents in the GO annotation database. If t and t′ are two terms
and a (t, t′) represents the set of parent terms shared by both t and t′, then

p(LCA(t, t′)) = min
t∗∈a(t,t′)

p (t∗) , (9)

and the three similarity measures are listed as follows.

SimResnik (t, t
′) = −log (p(LCA(t, t′))) (10)

SimLin (t, t
′) =

2× log (p(LCA(t, t′)))

log (p (t)) + log (p (t′))
(11)

SimRel (t, t
′) =

2× log (p(LCA(t, t′)))

log (p (t)) + log (p (t′))
[1− p(LCA(t, t′))] (12)

In fact, simRel reduces to Lin’s measure when p(LCA(t, t′)) is very small, i.e.,
[1 − p(LCA(t, t′))] approaches 1. Thus, in our experiments, we consider both



GRN from GO 7

Lin’s and Resnik’s measure. Specifically, we consider two genes to be similar if
and only if both measures yield high scores.

Gene products annotated with GO terms can be compared using the afore-
mentioned semantic similarity measures. Let GOscore be the measure of func-
tional similarity between two genes with respect to either their biological process
(BPscore) or molecular function (MFscore). Each gene pair receives two simi-
larity values, one for each ontology root. [15] defined the functional similarity
between two genes i and i′, with annotated GO term set Ti and Ti′ , respectively,
as the average inter-set similarity of terms in Ti and Ti′ , as follows.

GOscoreavg (i, i
′) =

1

|Ti| |Ti′ |

∑

t∈Ti,t′∈Ti′

Sim (t, t′) (13)

Themaximum similarity measure is also computed as an upper bound, as follows.

GOscoremax (i, i
′) = max

t∈Ti,t′∈Ti′

Sim (t, t′) (14)

Finally, the funSim score is calculated from the BPscore and MFscore of a
pair of gene products as follows,

funSim (i, i′) =
1

2
[(
BPscore (i, i′)

max(BPscore)
)2 + (

MFscore (i, i′)

max(MFscore)
)2] (15)

where max(BPscore) and max(MFscore) denote the maximum score for biolog-
ical process and molecular function, respectively.

Modified GO Term Probabilities In the previous section, GOscores are de-
fined by treating each term equally in the semantic similarity computation. That
is, the semantic similarities are defined based on the term probabilities p(t) =
N(t)/N(root(t)). However, this ignores the hierarchical structure of GO because
N(root(t)) is in fact the number of genes assigned by root(t) ∈ {BP ,MF}, i.e.,
two GO trees of different sizes are involved. N(t) is the number of genes anno-
tated to term t, thus, the definition of p(t) is in fact the distribution of term t
conditioned on a specific GOA data instead of all GOA.

Consider the case of two genes in a GO term list where some terms are com-
monly assigned to two genes, but some are assigned to only one gene. Clearly, the
two terms should have different term probabilities. To account for this imbalance,
we model the term probability for three differentoutcomes as follows: 1) term
annotates both genes, 2) term annotates only one gene, and 3) term annotates
none of the two genes. Given a term t and two genes denoted by m = N(root(t))
and n = N(t), with joint probability p(n,m) = p(t) = n/m, the probability of

term t annotated to (i) both genes is p(n,m, k = 2) = p(n,m) ×
(m
2
)

(n
2
) ; (ii) only

one gene is p(n,m, k = 1) = p(n,m)×
(m
1
)(n−m

1
)

(n
2
) ; (iii) neither of the two genes is

the same as the background distribution , i.e., p(n,m, k = 0) = p(n,m)×
(n−m
2

)
(n
2
) .

Let us consider an example to illustrate the discriminatory power of the
modified term probabilities. Given a term, if it is assigned to both genes, its
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probability is p(n,m, k = 2) = m2
×(m−1)

n2×(n−1) ; if it is assigned to only one gene,

its probability is p(n,m, k = 1) = 2m2
×(n−m)

n2×(n−1) ; otherwise, its probability is

p(n,m, k = 0) = m×(n−m)×(n−m−1)
n2×(n−1) . For a specific term, m is always signifi-

cantly smaller than n, thus, p(n,m, k = 2) << p(n,m, k = 1) << p(n,m, k = 0).
Similarly, their information content −log(p(n,m, k = 2)) >> −log(p(n,m, k =
1)) >> −log(p(n,m, k = 0)). In other words, the three outcomes represent three
distinct levels of information content.

Note that the definition p(n,m, k) also considers the prior probability, hence,
our modified term probabilities is consistent with and improves the original
definition. With the modified term probabilities, we can then use the semantic
similarity definition and GOscore computation method in Section 2.3 to compute
the functional similarity of a gene pair.

Deriving GRN from Gene Functional Similarity We next propose a
method to build a GRN from the computed gene functional similarity scores
of all applicable pairs.

If Lin’s average biological similarity between genes exceeds a threshold θ1,
i.e., funSimLin,GOavg(i, i

′) ≥ θ1, and Resnik’s maximum biological similarity
also exceeds some threshold θ2, i.e., funSimResnik,GOmax(i, i

′) ≥ θ2, then we
say that gene i and i′ are functionally similar, and there is a possible regulation
between gene i and i′.

The GRN is constructed using the derived gene regulations. In our exper-
iments, we exhaustively evaluated all combinations of semantic and GOscore
measures to find the one that gives the best F1-score for GRN.

Fused GRN from Functional Similarity and RP Since the GRN from the
RP and functional similarity methods are complementary, we propose a method
to fuse the two derived regulations into a GRN as follows.

For all pairs of gene i, i′, (i) if there exists transtive gene regulation from
gene i to i′ detected by GO RP, then gene i regulate i′, or(ii) if gene i, i′ are
functionally similar, then there exists a gene regulation between gene i and i′.

3 Results

We evaluate our GO-inferred GRN against benchmark GRNs from GeneNetWeaver
(GNW) [16]2. Specifically, we use the E.coli GRN. Since the complete E.coli
network from GNW contains many genes that have no corresponding GO anno-
tations, we extract seven sub-networks from it, which are listed in Table 1. GO
terms and relations corresponding to the genes in the networks were obtained
from files associated with the GO annotation database 3. The corresponding in-
formative GO terms related to the target genes were also selected from the gene
association files. Only GO terms involved in the molecular function and biolog-
ical process are considered. To construct a more reliable GRN, we choose only

2 http://gnw.sourceforge.net/
3 http://www.geneontology.org/GO.downloads.annotations.shtml
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Table 1. E.coli sub-networks and their GO relations. Each network has 25 genes.

Net1 Net2 Net3 Net4 Net5 Net6 Net7

No. of edges 18 15 24 11 15 19 29

regulate 2 1 1 1 1 2 4

part-of 3 1 0 2 2 2 2

is-a 26 26 9 28 33 18 36

No. of terms 96 93 44 108 110 82 90

GO terms with information content I(t) ≥ θI , i.e., above a certain threshold θI ;
a threshold θI = − log 0.25 was used in the experiments. Each GO annotation
is classified into one of 5 descending order of quality categories: experimental,
computational, author statement, curator statement, and automatic. Annota-
tions derived through direct experiments are deemed higher quality compared
to others [17]. We only consider GO terms with the top two quality levels: com-
putational and experimental.

In the following sections, we evaluate the performance of the three GO-
inferred methods on the seven networks. The evaluation measurements include
accuracy, precision, recall, F1-score, true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) numbers. Average results over the seven
sub-networks are denoted by “Avg”. To compare the three GO methods, namely
GO Regulatory Path (denoted by “RegPath”), GO Functional Similarity (de-
noted by “FunSim”), and GO Fusion (denoted by “Fusion”), we list their GRN
prediction performance on the seven target networks in Table 2.

From the “RegPath” results in Table 2, we see that our GO RP approach
achieved very high average precision of 87.43%, with corresponding F1-score
of 62.93%. In general, very few false positive (FP) edges were extracted, with
two networks (Net4 and Net5) consistently having zero FPs, and the remaining
five networks registering less than three FPs. To summarize, we have discovered
seven new gene regulations via our GO RP method, three self-regulations on gene
“argP”, “fadR” and “flhC”; four gene pairs: “argP” regulate “gyrA”; “argP”
regulate “polA”; “dnaA” regulate “dinB”; and “flhC” regulate “flhD”. We tried
to look up evidences for these seven gene regulation pairs from the MEDLINE
database 4, but was unable to find any evidence. We may eventually need experts
in the field to confirm or reject these FPs. Moreover, the FPs could have been
generated due to (i) human errors in the GO database: incorrect gene annotations
or GO relations; (ii) incompleteness of the target network.

One limitation of the RP method lies in its poor recall, which averaged only
51.41%. This shows that the GO RP method could not detect enough gene reg-
ulations in the target GRN, which can be due to (i) incomplete gene GO anno-
tations, and missing GO terms in GON; (ii) lack of annotated regulate relations
among the GO terms; (iii) incomplete is − a or part − of GO relations; (iv) in-
accuracy or incompleteness of the target ground truth network itself. Clearly, the

4 http://www.ncbi.nlm.nih.gov/
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incomplete GO information will bound the accuracy of our GO regulatory path
method, which originally motivated us to use functional similarity to further
improve our GRN inference from GO.

Table 2. Performance of the three proposed GO methods

TP FP FN TN Pre.(%) Rec.(%) F1(%) Acc.(%)

R
eg
P
a
th

Net1 10 3 8 604 76.92 55.56 64.52 98.24
Net2 6 1 9 609 85.71 40.00 54.55 98.40
Net3 20 1 4 600 95.24 83.33 88.89 99.2
Net4 5 0 6 614 100 45.45 62.5 99.04
Net5 5 0 10 610 100 33.33 50 98.4
Net6 5 3 14 603 62.5 26.32 37.04 97.28
Net7 22 2 7 594 91.67 75.86 83.02 98.56
Avg 10.43 1.43 8.29 604.86 87.43 51.41 62.93 98.45

O
:F
u
n
S
im

Net1 7 51 11 556 12.07 38.89 18.42 90.08
Net2 2 2 13 608 50.00 13.33 21.05 97.6
Net3 10 55 14 546 15.38 41.67 22.47 88.96
Net4 4 35 7 579 10.26 36.36 16 93.28
Net5 2 4 13 606 33.33 13.33 19.05 97.28
Net6 16 270 3 336 5.594 84.21 10.49 56.32
Net7 19 330 10 266 5.444 65.52 10.05 45.6
Avg 8.57 106.71 10.14 499.57 18.87 41.90 16.79 81.30

M
:F
u
n
S
im

Net1 10 3 8 604 76.92 55.56 64.52 98.24

Net2 6 1 9 609 85.71 40.00 54.55 98.4

Net3 20 1 4 600 95.24 83.33 88.89 99.2

Net4 5 0 6 614 100.00 45.45 62.5 99.04

Net5 5 0 10 610 100.00 33.33 50.00 98.4

Net6 5 3 14 603 62.5 26.32 37.04 97.28
Net7 18 2 11 594 90.00 62.07 73.47 97.92
Avg 9.86 1.43 8.86 604.86 87.20 49.44 61.57 98.35

F
u
si
o
n

Net1 11 3 7 604 78.57 61.11 68.75 98.4

Net2 6 1 9 609 85.71 40.00 54.55 98.4

Net3 20 1 4 600 95.24 83.33 88.89 99.2

Net4 6 0 5 614 100 54.55 70.59 99.2

Net5 6 1 9 609 85.71 40.00 54.55 98.4

Net6 6 3 13 603 66.67 31.58 42.86 97.44

Net7 23 3 6 593 88.46 79.31 83.64 98.56

Avg 11.14 1.71 7.57 604.57 85.77 55.70 66.26 98.51

The evaluations of GRN predicted from GO Functional Similarity using the
original term probabilities (denoted by “O:FunSim”) and modified term proba-
bilities (denoted by and “M:FunSim” ) are shown in Table 2. The “O:FunSim”
method resembles existing works which extract gene interactions based on gene
similarity from GO Semantic Similarity [5, 4, 6]. It can be seen that “M:FunSim”
outperforms “O:FunSim” notably on the averaged precision, recall, F1-score, and
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accuracy. Clearly, the modified term probabilities are extremely effective in cap-
turing the functional similarity of genes.

Due to the complementary strengths of last two methods, they can be fused
to capture more information from the GO databases. From the Fusion method in
Table 2, we see that the GO Fusion approach gave the best performance in terms
of F1 measure and accuracy. The overall low recall of the GO Fusion method
is due to the incompleteness of the GO database and the target network. The
extremely high TNs (reflected in the accuracy rates of 98% or higher) shows that
our GO method was able to filter the vast majority of negative edges. In fact, our
approach generally yielded very low false positive rates. As a result, very high
precision rates averaging 85.77% were achieved by the Fusion method as shown
in Table 2. This conservative behaviour is desirable because gene regulation is
hard to validate in general and thus a GRN should have as high precision as
possible.

4 Conclusion

We proposed a method to detect both direct and transitive regulations between
genes by using their corresponding GO annotations and relations. By developing
a novel shortest path detection algorithm, we detected the most likely regulatory
paths from GONs. Experiments show that transitive regulations play an impor-
tant role in GRN and their detection significantly improves the accuracy of the
generated GRN. We show that GO can be used effectively to detect transitive
regulations.

Due to the incomplete information of the source GO database, the GRN gen-
erated from the GO Regulate Path method may overlook some important direct
regulations. Inspired by the fact that gene regulations occur between functionally
similar genes, we propose the GO FunSim method to detect direct regulations.
Gene function similarity scores are computed from the semantic similarities of
their corresponding GO terms, using their occurrence probabilities. We then
modified the term occurrence probabilities to account for GO term imbalance,
e.g., the likelihood of a term being assigned to each, both, or neither of the
two genes. Experimental results show that our GO FunSim method based on
the modified term probabilities are extremely adept at capturing pairwise gene
function similarities.

Lastly, we proposed a simple fusion method to combine the results of the
proposed FunSim and Regulate Path methods to generate a fused GRN. Ex-
periments show that our GO Fusion method yielded the best GRN in terms of
F-score.

The errors may arise from the following: (i) the incompleteness of the target
networks; (ii) the incompleteness of the GO databases; (iii) the erroneous anno-
tations of GO database; (iv) GO allows us to annotate genes and their products
with a limited set of attributes, its scope is limited to the three domains, which
is not comprehensive. Hence, the GRN we extracted from GO are in fact based
upon partial evidence provided by the current GO. The false negatives of the
networks could be further reduced by fusing the GO generated GRN with addi-
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tional data sources such as wet-lab data. One extension to this work is to identify
ontology terms that are specific to the pathways under consideration, e.g., terms
related to cell-cycle functions in our experiments. The GRN developed by our
method could be useful for validation of networks built by other experimental
or computational approaches.
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