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Abstract. Inferring a time-delayed gene regulatory network from mi-
croarray gene-expression is challenging due to the small numbers of time
samples and requirements to estimate a large number of parameters.
In this paper, we present a two-step approach to tackle this challenge:
first, an unbiased cross-correlation is used to determine the probable
list of time-delays and then, a penalized regression technique such as
the LASSO is used to infer the time-delayed network. This approach is
tested on several synthetic and one real dataset. The results indicate the
efficacy of the approach with promising future directions.
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1 Introduction

The collection of high-throughput molecular data using advanced technology
has enabled researchers to reverse engineer the dynamics of the underlying com-
plex biological system. The inferences of mechanisms are generally achieved by
building the gene regulatory networks (GRNs). Using time-series gene expres-
sion data, gathered by microarray chips, a typical yet simple GRN is inferred
and it consists of interconnected nodes (genes) and edges that demonstrate how
a particular gene is regulated by a set of genes.

With microarrays, it is possible to measure the expressions of thousands
of genes simultaneously. However, the data are only gathered over a few time-
samples for several reasons, such as cost of experiments, availability of subjects,
etc. Sometimes this is also because the biological state we are interested in



2 Inferring Time-delayed GRN

cannot be known precisely. For example, while studying development of fruitfly
embryos, hundreds of embryos are bred and gene expressions are measured at
different points in time/stages of development. This results in a variability along
the time axis because not all embryos are going to grow at the same speed [1].
From a computational view, while modeling a GRN, it is assumed that gene
expressions at a given time point only depend on the immediate previous time
point [2–4]. Such an assumption leads to GRN with first order (or delay or lag).
In reality, in many cases, the regulation of one gene by another gene may occur
only after a number of time points, resulting in an invalid first order assumption.
However, modeling higher order GRN is very challenging due to the significant
increase in numbers of parameters which need to be estimated and the reduction
in numbers of available time samples.

In the past, several approaches have been presented to build a first order GRN
using time-series gene-expression data. These approaches include a Bayesian
framework, Dynamic Bayesian Networks (DBN), Boolean Networks and their
probabilistic approaches, ordinary differential equations (ODE), linear or non-
linear regression approaches, information theory based models, etc. The readers
are referred to [2, 3, 5–7] for excellent reviews on this topic. With respect to
time-delayed GRNs, a decision tree with delayed correlation was used to dis-
cover the time-delayed regulations between the genes [8]. A first order DBN
model is extended to a higher-order DBN where mutual information has been
used to determine the best time-delay of an interaction [9, 10]. In another ap-
proach, the ARACNE (Algorithm for the Reconstruction of Accurate Cellular
Networks) model has been extended to TimeDelay-ARACNE by using a station-
ary Markov Random Field [11]. Using protein-protein interaction and microarray
data, a skip chain model was introduced to obtain a GRN [12]. Recently, based
on the mutual information and minimum description length principles, a novel
scoring metric was proposed to infer time delayed GRN [13]. Although several
DBN based approaches were proposed for inference of time-delayed GRN and
show the importance of inferring time-delay edges, these methods are only ap-
plicable to small networks due to high computational cost. In [14], a simple time
delay Boolean networks framework was presented to tackle the computational
complexity. However, many of these approaches need discretization of data to
infer the GRN and hence, possibly suffer from loss of information.

Using continuous data, sparse regression based approaches have been devel-
oped for inferring first-order GRNs [4,15,16]. However, to the best of our knowl-
edge, such regression approaches for inference of higher-order GRN are not yet
developed. In this paper, we propose a simple yet effective solution to model
a higher-order GRN under a sparse linear regression framework. In a two-step
method, we first determine a probable order of regulation using cross-correlation,
and then, a LASSO (least absolute shrinkage and selection operator) regression
in a multivariate autoregression (MVAR) framework is applied to infer a time-
delayed GRN. The efficacy of this approach is tested on both synthetic datasets
with varying numbers of genes and numbers of time points and a real dataset.
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The rest of the paper is organized as follows: In the next subsection, we
propose the two-step cross-correlation based methodology to infer time-delayed
GRN. Next, details on synthetic as well as real datasets, parameter estimations,
and performance evaluations metrics are presented. Finally, key results, discus-
sion and future directions are discussed.

2 Methods

Let X = {xi(t)}
I,T
i=1,t=1

denote expressions of I genes gathered over equally-
spaced T time samples. Here, xi(t) denotes expression of gene i at time t. We
also assume that the gene expressions of all genes at time t are represented by
the vector x(t) = (xi(t))

I
i=1. A higher order fully-connected network of these

I variables (genes) could be derived by using an r-th order multivariate vector
autoregressive (MVAR) model:

x(t) =

r∑

τ=1

βτx(t− τ) + ε(t) (1)

where βτ = {βτ
i,j}

I,I
i=1,j=1

represents the strength of interactions (i.e. regression
coefficients) between all the pairs of genes for a model of order τ , and ε(t) =
(εi(t))

I
i=1 denotes residuals that are assumed to follow a Gaussian distribution

with zero mean and are independently and identically distributed (i.i.d.). For
an r-th order model, I2r coefficients (β1, β2, . . . , βr) need to be estimated from
the given data. This could be easily achieved by using a standard regression
formulation [16].

The above mentioned MVAR model needs to be modified for inference related
to biological networks, such as time-delayed gene regulatory networks for the
following reasons: (1) it is generally assumed that expression time-series are
stationary and no multiple regulation edges with different time lags exist between
two genes; (2) GRNs are sparse in nature while a standard formulation derives
a fully connected network; (3) in a typical gene-expression time-series data, the
numbers of genes whose expressions are measured are far higher than numbers
of time samples. Hence a standard regression technique to derive strength of
connections is inapplicable. In the following, we propose a method to tackle
these challenges. First, we fix the time-delay by using cross correlation and then
a sparse regression technique is used to infer a time-delayed network.

Mathematically, the assumption of a single time-delayed regulation (out of
possible r lags) between two genes i and j implies that for ∃τ if βτ

i,j > 0, then
βτ
i,j = 0 for all other τ . This requirement could be achieved by using the cross-

correlation between two genes and using the lag that gives maximum absolute
cross-correlation. If gene j regulates gene i, the unbiased cross-correlation is
given by [17],

Ĉ(xi, xj , τ) =
1

T − |τ |

T−τ−1∑

t=1

xi(t+ τ)xj(t) τ ≥ 1 (2)
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Here, Ĉ(xi, xj , τ) is an estimated unbiased cross-correlation for regulation
of gene i by gene j. Such cross-correlation was computed after normalising ex-
pressions of a gene to have zero mean and a standard deviation of one. These
values are computed for all τ = 1, 2, . . . , r and the maximum of the absolute
cross-correlation denotes the probable time lag regulation. Let Cij denotes the

maximum absolute value of Ĉ(xi, xj) vector and it corresponds to a time-lag eij .
Once the probable time lag is fixed, the next step is to identify the relevant

regulators for gene i from all the possible I genes. This can be obtained by
employing sparse linear regression techniques like the LASSO.

Let’s assume that gene j regulates gene i with the time lag kij which is

estimated using cross-correlation. Let y(t) = (xi(t))
I,T
i=1,t=r+1

denote a gene ex-

pression vector of i-th gene at time t and z(t) = (xi(t))
I,T−kij

i=1,t=r−kij+1
denote

the vector of gene expression at the corresponding time lag kij for each gene.
Then, using the multivariate vector autoregressive model, the strength of the
time delayed regulation by each of the genes could be estimated by,

yt = ztβ∗ + εt (3)

β∗ is regulation strength (regression coefficients) matrix of size I × I, and
εt = [ε1(t), ε2(t), . . . εI(t)] the corresponding innovations. If we assume that the
t-th row of matrices Y , Z, and E, are yt, zt, and εt respectively, Eq. (3) could be
written as Y = Zβ+E and the parameters could be estimated using a standard
least square procedure,

β̂ = (ZTZ)−1ZTY (4)

Considering that GRNs are sparse and more importantly, the number of
time samples are significantly smaller than the number of genes in a typical
gene-expression dataset, Eq. (4) can not determine the strength of regulatory
connections. However, by using sparse regression techniques, these inherent con-
straints could be solved. By treating each of the genes independently to identify
its potential regulators, the LASSO loss function is given by

L (βi., αi) = ||yi − Zβi.||
2
+ αi |βi.|1 (5)

where αi is a regularization parameter.
The solution provided by Eq. (5) gives only a few non zero βi. coefficients

which denote regulation of i-th gene by a very few genes. Using cross-correlation
and LASSO regression, we obtain a sparse time-delayed linear GRN.

Algorithm 1 describes the complete approach to derive a time-delayed GRN.
This is basically a two-step procedure. Starting with time-series gene-expression
data and a fixed maximum time-delay, for a given gene, cross-correlation is used
to determine the probable time lags of regulations by other genes. In the second
step, LASSO regression is used to derive the regulators. By repeating the same
process for all the genes, a complete time-delayed GRN is derived.
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Algorithm 1 Time-delayed Gene Regulatory Network with LASSO regression

Begin

Time-series gene expression data X; Maximum possible time-delay r; Final time
delay matrix k = [ ]
for Each gene i do

A temperory vector k∗ = [ ]
for All other gene j do

Compute the cross-correlation Ĉ(xi, xj) between i-th gene and j-th genes using
Eq. (2)
Determine the probable time-delay eij based on maximum absolute cross-
correlation Cij

end for

Store all eij values in temperory vector k∗

Derive dependent variable matrix yi and independent variable matrix Z based on
probable time-delays eij
Using five-fold cross validation, Determine αi parameter for LASSO regression
Determine the LASSO regression coefficients (βi,.) using the best αi value
if βi,j = 0 then

k∗

j = 0
end if

Append time-delay information matrix k = [k k∗]
end for

Output: β (and hence gene regulatory network as a non-zero β denotes an edge)
and time-lag information k for each edge

3 Experiments

The performance of the proposed method was tested using both simulated and
real time-series gene expression datasets. To generate simulated datasets, we ex-
tracted sub-networks of size 20, 50, or 100 genes by using gene net weaver (GNW)
software [18]. These networks are in fact extracted from a global Saccharomyces
cerevisiae network, and hence, the extracted network topologies resemble actual
regulatory networks.

Once the network is extracted, each of the regulatory edges is randomly as-
signed a time-delay. In reality, the maximum time-delay information is unknown.
In the worst case scenario, the longest delayed response can be expected to be
T − 1 time points. However, as discussed earlier, this will make the estimation
of parameters (βij) intractable. Hence, in this study, the maximum time-delay
(r) was fixed at either 3 or 5.

3.1 Simulating Synthetic Data

For a given network topology, the regression coefficients corresponding to no
interactions among genes were set to zero. For all the edges with respective
τ values, MVAR coefficients (βτ

i,j) were obtained by drawing samples from a
uniform distribution on the interval [0.8, 1]. Coefficients for all other time-lags



6 Inferring Time-delayed GRN

(τ∗ ∈ r where τ∗ 6= τ) were set to zero, i.e., βτ∗

i,j = 0. For example, if the j-th gene

regulates the i-th gene with 2nd order time delay and r = 5, then β2
i,j ∈ [0.8, 1]

and β1
i,j = β3

i,j = β4
i,j = β5

i,j = 0.

The initial gene expression values at t = 0, 1, ..., r were drawn from a uniform
distribution on the interval [0, 1]. For successive time points, expressions were
generated using a higher-order MVAR model with added i.i.d. Gaussian random
noise Σ = I. The first 10,000 samples were discarded. The numbers of time
points were varied from 20, 30, or 40 and, for each combination of network size
and number of time points, we generated 100 time-series datasets by randomly
initializing the gene expressions.

3.2 Parameter Estimation and Performance Evaluation

In both synthetic and real datasets, expressions of a gene were normalized
to have zero mean and one standard deviation. In the proposed algorithm,
LASSO regression was used to identify regulatory edges and to generate sparse
time-delayed GRNs. The network topology is essentially achieved by I separate
LASSO regressions. The LASSO solutions were achieved by using the GLMNET
package [19] which can generate the whole solution path for αi. For each such re-
gression, the penalty parameter αi was chosen by using five-fold cross-validation.

We evaluated the performance of the proposed approach over a hundred
simulated datasets for each combination of number of genes and number of time-
points. In generating simulated datasets, the network topology was extracted
from GNW software and each regulatory edge was randomly assigned a time-
delay. Hence, the true information (ground truth) of regulatory connection and
their delay was available. Using this information, we employed precision, recall
and F-measure as performance metrics. Let TP, FP, TN, and FN denotes true
positive, false positive, true negative, and false negative between the generated
network and ground truth. TP were computed for exact time delays while FPs
were computed by counting all instances when a false edge (of any time order)
is detected. The precision, recall, and F-measure are defined below:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F −measure = 2×
Precision×Recall

Precision+Recall
(8)

We further defined order identification accuracy (OIA) as the number of
edges which were identified with true time-delays divided by total number of
identification of true edges irrespective of time order, i.e., OIA = TP

w
where w

denotes the number of all true edges.
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Fig. 1: S. cerevisiae KEGG pathway in G1 phase. Dotted line represents indirect
regulation.

3.3 Real Dataset

We selected the Saccharomyces cerevisiae (yeast) cell cycle dataset to test the
performance of the proposed method. Spellman et al. have identified 800 differ-
entially expressed genes for cell-cycle regulation covering four phases (G1,S,G2
and M) of yeast development [20]. For our analysis, eleven genes (Cln3, Cdc28,
Swi4, Swi6, Clb5, Clb6, Cln1, Cln2, Cdc6, Sic1, Mbp1) were specifically selected
from the cdc28 experiment of G1-phase resulting in dataset with 11 genes and 17
time points. As suggested in [11], the first time point is excluded as it is related
to the M step. This dataset is used in two recent studies and is available with
TDARACNE package [11].

In the proposed method, the α parameter plays an important role in de-
termining regulators of a particular gene. To avoid errors due to parameter
estimation with a five-fold cross validation, we repeated the complete process
for 100 times and used edge stability of 0.75 to infer the final single network
structure [16]. An edge stability of 0.75 implies that an edge is derived at least
75% of the time.
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Fig. 2: An inferred time-delayed gene regulatory network of 11 genes of S. cere-
visiae. The maximum time delay is set to 3.

4 Results and Discussion

Inferring a time-delayed GRN from the gene-expression data is an important step
to understand the dynamics of the underlying gene regulation. In this paper, we
have proposed a two-step approach to infer such a network using cross-correlation
and sparse regression. To evaluate the efficacy of this approach, several synthetic
datasets with varying time points and numbers of genes were generated. By fixing
the maximum delay to 3 or 5, the performances of the proposed approach are
shown in Table 1 and Table 2, respectively.

The results on synthetic datasets show that increase in number of genes and
decrease in length of time series reduces precision, recall and F-measure. The
results also show that within truly identified edges, the correct delay is also
generally identified with a high accuracy. At the same time, by fixing the lower
value of the maximum possible time delay, the performance could be improved,
because a single point increase in maximum delay (r) increases the number
of parameters to be estimated by I2. Moreover, the available number of time
samples is reduced by one. Hence, it is important to not choose too high a
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Fig. 3: An inferred time-delayed gene regulatory network of 11 genes of S. cere-
visiae. The maximum time delay is set to 5.

value of the maximum possible time-delay to get any meaningful results by the
proposed computational algorithm.

As a true underlying network of S. cerevisiae is unknown yet, we use the
KEGG pathway to validate the reconstructed GRN (Figure 1). In yeast cell cy-
cle progression, G1 and G2 phases are gaps between DNA replication (S phase)
and mitosis (M phase). As per KEGG pathway and [21], in G1 phase, an as-
sociation between Cln3 and Cdc28 is needed to initiate the start of the cycle .
After reaching a certain threshold of the Cln3/Cdc28 complex, two transcription
factors SBF and MBF are activated. Swi4 and Swi6 form the SCB complex with
SBF which results in activation of Cln1 and Cln2 genes [22] while Mbp1 and Swi6
form a complex with MBF to promote transcription of other genes required for
S-phase progression. Cln1 and Cln2 interacting with Cdc28 promote the activa-
tion of B-type cyclin associated CDK, which drives DNA replication and entry
into mitosis. Further, Clb1 and Clb2 are associated with Cdc28 and this complex
represses Sic1, which in turn represses the Clb5/Clb6/Cdc28 complex.

The GRNs inferred by the proposed method are shown in Figure 2 and Figure
3. As can be seen, several true gene-gene interactions have been recovered. For
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Table 1: The performance of the proposed method over 100 simulated datasets
with r = 3

Network Size Time Points Precision Recall F-measure OIA

20 20 0.35 0.31 0.32 0.76
30 0.45 0.50 0.47 0.82
40 0.52 0.62 0.56 0.84

50 20 0.24 0.36 0.29 0.92
30 0.30 0.66 0.41 0.96
40 0.35 0.82 0.49 0.97

100 20 0.18 0.14 0.16 0.90
30 0.22 0.31 0.26 0.92
40 0.26 0.47 0.33 0.93

Table 2: The performance of the proposed method over 100 simulated datasets
with r = 5

Network Size Time Points Precision Recall F-measure OIA

20 20 0.21 0.22 0.21 0.57
30 0.28 0.40 0.33 0.67
40 0.36 0.53 0.42 0.74

50 20 0.17 0.25 0.20 0.86
30 0.22 0.57 0.31 0.92
40 0.26 0.75 0.39 0.94

100 20 0.13 0.11 0.12 0.86
30 0.16 0.26 0.20 0.87
40 0.18 0.42 0.25 0.88

example, in Figure 2, we find interaction between (1) Cln3 and Swi6, (2) Clb6
and Cdc6, (3) interaction of Sic1 with Cln1, Clb6 and Cln2, (4) Swi4 and Swi6,
and (5) interaction of Swi4 and Swi6 with Cln1 and Cln2. However, we also note
that there are few wrong directions of regulation. Further, comparison between
Figure 2 and 3 reveals that few new edges are formed and few are not recovered.
Such phenomenon could be attributed to loss of time samples and increase in
parameter space.

As discussed earlier, building a time-delayed GRN is a very challenging prob-
lem and several future directions may lead to better solutions. In our earlier work,
we proposed a bootstrapping technique for short time-series datasets with a first-
order assumption [23]. Developing such techniques for higher order models and
integrating stability criteria is a promising possible extension of this work. In the
current two-step procedure, cross-correlation is used to determine the probable
time lags. Since cross-correlation may suffer due to small sample size, develop-
ing a robust technique with possibly a single step procedure would be another
interesting extension of this work. Last but not least, an extension of the data
integration approach for first-order GRN inference [24, 25] to higher order may
help in deriving a highly accurate time-delayed GRN.
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