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ABSTRACT
The regulatory mechanism of meiotic recombination hotspots
is a fundamental problem in biology, with broad impacts
on areas ranging from disease study to evolution. Recently,
many genomic and epigenomic features have been associated
with recombination hotspots, but none of them can explain
hotspots consistently. It is highly desirable to integrate the
different features into a predictive model, and study the re-
lation of the features with hotspots and themselves with
a systems approach. Moreover, due to rapid and dynamic
evolution of recombination hotspots, regulatory mechanisms
of hotspots that are evolutionarily conserved among species
remain unclear.

We propose a machine learning approach that encodes ge-
nomic and epigenomic features into a support vector ma-
chine (SVM). Trained on known hotspots and coldspots in
human and mouse genomes, the model is able to predict
hotspots based on the features with good performance in
both species. Moreover, the model reports a ranking of
feature importance, uncovering the interactions of the fea-
tures with hotspots and among themselves. Applying the
method to large-scale data, we identified evolutionarily con-
served patterns of trans-regulators and feature importance
between human and mouse hotspots. This is the first at-
tempt to build a predictive model to identify evolutionarily
conserved mechanisms for recombination hotspots by inte-
grating both genomic and epigenomic features.
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1. INTRODUCTION
Meiotic recombination is the process that homologous chro-
mosomes exchange arms during the generation of sex cells.
As a fundamental cellular process, meiotic recombination
plays key roles in sexual reproduction, birth-defect diseases,
disease gene mapping, molecular evolution, etc. It is ob-
served that meiotic recombination events tend to occur pref-
erentially within short regions of a few kilo bases long, called
“recombination hotspots”. Despite its importance, the regu-
latory mechanism of recombination hotspots (e.g. the loca-
tions and intensities of hotspots) remains unclear. Develop-
ment of new Bioinformatics methods to help elucidate the
molecular architecture behind the control of recombination
hotspots are highly desirable and would make broad impacts
on biomedical research.

To understand genetic factors responsible for the recombina-
tion hotspots, various genomic features have been analyzed.
Prominent sequence features include GC content, repetitive
elements, sequence motifs, among others [16, 13]. Relations
with genes (e.g. gene fraction, exon count, enrichment of
GO terms) are also important features [7, 30]. The feature
analysis is usually conducted using the following methods.
First, the occurrences of each feature are counted in hotspots
and coldspots, and features with large differences in occur-
rence are associated with recombination hotspots [20, 31].
Second, multiple linear regression model is used to predict
recombination rate from genomic variables [13]. Third, ma-
chine learning approaches (support vector machine and ran-
dom forest) have been applied to predict hotspots, but using
limited features of DNA sequences (e.g., codon composition)
[32, 14].

The above approaches compare hotspots and coldspots, but
ignore the inheritable variation in recombination rates and



sequence polymorphisms among individuals. Considering
recombination rate as a phenotype, then genome-wide as-
sociation studies (GWAS) can be carried out to identify as-
sociated genetic factors responsible for variations of recombi-
nation hotspots. This strategy has been applied successfully
using pedigree-based methods [17, 5] or LD-based methods
[31]. The genomic loci identified using these GWAS methods
can be extended to detect proximal genomic features.

Meiotic recombination is profoundly connected with evolu-
tion. Like mutation, recombination is an important process
to generate genetic diversity which is indispensible for nat-
ural selection. On the other hand, the evolutionary mecha-
nism of recombination hotspots themselves remains elusive
with several challenging questions. Due to biased gene con-
version, a recombination hotspot tends to kill itself; never-
theless, many recombination hotspots in extant human pop-
ulations have existed for thousands of generations. This is
called hotspot paradox which remains open for more than
a decade [4]. Another puzzle about evolution is the lack of
conservation in locations of recombination hotspots between
human and chimpanzee genomes, despite over 99% sequence
identity between the two species [29]. Although this can be
explained by the rapid evolution of hotspots [21], an impor-
tant question remains: “What are the evolutionarily con-
served mechanisms for regulating recombination hotspots
among closely related species?” In this paper, we aim to
address this question by comparative genomics approach to
feature analysis between human and mouse.

The discovery of PRDM9 protein as a trans-regulator of re-
combination hotspots represents a major breakthrough in
this field [3, 23, 21]. PRDM9 is a DNA-binding zinc finger
protein whose binding motif is enriched in hotspots. Its zinc
finger binding array evolves rapidly, which partially explains
the hotspot paradox and the lack of location conservation
between human and chimpanzee hotspots [21]. Following
the discovery, multiple studies confirmed the role of PRDM9
as a regulator of hotspots [31, 25, 30]. However, PRDM9 is
unlikely the only trans-regulator of hotspots, and it is de-
sirable to identify other regulators like PRDM9. To this
end, authors of this paper developed an approach to pre-
dicting trans-regulators of recombination hotspots in mouse
genome [30]. Basically, we searched for transcription fac-
tors (TFs) with binding motifs enriched in hotspots against
coldspots. Our analysis confirmed that PRDM9 is a ma-
jor trans-regulator of hotspots; moreover, a top list of TFs
is reported as putative regulators. Interestingly, epigenetic
functions (especially histone modifications) are enriched in
these candidate regulators as shown in our gene-ontology
(GO) term analysis. This observation is consistent with the
long-standing hypothesis that epigenetic control plays an im-
portant role in the regulation of recombination hotspots [1].

In addition to sequence-based features (e.g. GC content)
reviewed above, there is increasing new evidence for the im-
portance of epigenetic features in regulating meiotic recom-
bination hotspots. For instance, DNA methylation tends to
inhibit the formation of crossover; the occurrence of dou-
ble strand breaks (DSBs) is enriched in open chromatin (see
the review [1] and references therein). Histone modification
is an important category of epigenetic features associated
with recombination that is under intense research [25, 18].

The aforementioned PRDM9 protein is a meiosis-specific hi-
stone methyl-transferase that trimethylates H3 at K4 [12].
In a recent paper, feature selection was used to analyze the
association of chromatin features (H3K4me3, H4K36me3,
and nucleosome occupancy) and GC content with hotspots
in yeast [11]. But this paper did not attempt to predict
hotspots from these features, nor did the authors compare
different species.

Due to the large amount and complexity of data involved,
the research of meiotic recombination hotspots calls for new
development of bioinformatics methods. A challenging prob-
lem is how to integrate the genomic and epigenomic fea-
tures associated with recombination hotspots into a predic-
tive model. Moreover, it is highly desirable to uncover regu-
latory mechanisms that are evolutionarily conserved among
species.

In this paper, we developed a machine learning approach
to integrate genomic and epigenomic features into an SVM-
based classifer, which can be used to predict hotspots. The
pipeline of our method is shown in Figure 1. We first iden-
tify a list of transcription factors (TFs) as putative trans-
regulators of recombination hotspots, using an approach that
we previously developed [30]. Then, we combine the bind-
ing site occurrences of the TFs with GC content and histone
modification signals as features in an SVM model for clas-
sification. The SVM model is trained on known hotspots
and coldspots in human and mouse genomes, and is used to
predict if a short genomic region is a hotspot. Moreover,
the training of SVM model automatically ranks the impor-
tance of features, which sheds light on the relations of the
features with hotspots and among themselves. Last but not
least, the orthologous features between human and mouse
are compared to uncover the evolutionarily conserved mech-
anisms for recombination hotspots.

Applying this integrative method to large-scale real data of
human and mouse, we achieved good predictive performance
and obtained biologically interesting results. For instance,
the AUC (area under the ROC curve) of chromosome-wide
and genome-wide prediction of human hotspots are higher
than 80% using Gaussian kernel. Orthologous TFs we iden-
tified as trans-regulators are correlated in the binding prefer-
ence to hotspots between human and mouse. Moreover, the
ranks of feature importance reported by our SVM model
are significantly correlated between the human and mouse
genomes. To our best knowledge, the identification of such
conserved cross-species patterns of recombination hotspots
with both genetic and epigenetic factors is new in the field.
Our method can be applied to understand the molecular reg-
ulatory machinery as well as the evolutionary mechanisms
of meiotic recombination hotspots. Moreover, the machine
learning method can be used to predict hotspots in many
other species for which genetic maps are not yet available.

2. METHODS
2.1 Predicting trans-regulators for recombina-

tion hotspots
We applied the framework in our preliminary study [30]
to predict trans-regulators for recombination hotspots. For
better readability, we briefly describe this framework in sub-
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Figure 1: The framework for discovering the mech-
anisms of recombination hotspots and their compu-
tational prediction.

sections 2.1 and 2.2. In our previous work [30], we applied
this framework to mouse hotspots inferred from ChIP-seq
data and here we also apply to historical hotspots of human
derived from SNPs.

For those proteins with known binding motifs available, we
employed the software tool FIMO [8] to scan for their oc-
currences in both hotspots and coldspots. FIMO takes two
files as inputs, namely, a file containing query motifs and
the other file containing DNA sequences. Particularly, each
query motif is represented as a position-specific frequency
matrix and the sequence database consists of known hotspots
and randomly generated coldspots (see more details about
coldspots in [30]). FIMO computes a log-likelihood ratio
score for each occurrence of the motif in the given sequences
and converts this score to p-value and q-value (correcting the
multiple-testing issue) to show the statistical significance of
this occurrence. Finally, for a motif, an occurrence in a
hotspot with low p-value or q-value indicates that the pro-
tein with this motif tends to bind to the hotspot.

In our preliminary study [30], we analyzed the FIMO re-
sults and defined odds ratio scores for TFs in equation 1 to
represent the preference of a TF to bind to hotspots. Here,
h(g) and c(g) are the number of hotspots and coldspots cov-
ered by the gene g respectively. Those TFs with high odds
ratio scores are predicted as candidate trans-regulators of
recombination hotspots.

Ohc(g) =
h(g)

c(g)
· N − c(g)

N − h(g)
(1)

2.2 GO term analysis

Given a gene g, T (g) is the set of GO terms annotating this
gene. We define the similarity between a term t and a gene g,
S(t, g), in equation 2 and subsequently define the similarity
between t and a set of genes G, S(t, G), in equation 3.

S(t, g) =
1

|T (g)|
∑

t′∈T (g)

sim(t, t′) (2)

S(t, G) =
1

|G|
∑
g∈G

S(t, g) (3)

Here, sim(t, t′) in equation 2 is the semantic similarity be-
tween GO terms t and t′, which is calculated using the
method in [28].

Let HG denote the set of genes with high odds ratio scores.
Now, S(t, G) and S(t,HG) can be utilized to show the term
t’s enrichment in the whole gene group G and HG, respec-
tively. Therefore, the gap score for the term t, gap(t), de-
fined in equation 4, can be used to discriminate t’s enrich-
ment in HG and G. For example, a large gap indicates that
t is enriched in the genes with high odds ratio scores while
not enriched in the whole gene group G.

gap(t) =
S(t,HG)− S(t, G)

S(t, G)
(4)

2.3 Classification model for recombination hotspot
In this section, we collect different features to represent
a sequence and then build classification models to predict
whether it is a recombination hotspot or not.

Based on the GO term analysis for our predicted trans-
regulators, epigenetic terms (especially histone modifications)
are found to be enriched in these trans-regulators, providing
insights into the epigenetic regulatory mechanism of recom-
bination hotspots. Therefore, a sequence with high signal
of histone modifications would be more likely to be recom-
bination hotspots than those with low signal. In this paper,
each hotspot or coldspot is divided into small bins and each
bin is assigned with signal values for histone modifications
based on our collected data. Thus, we can assign a hotspot
(coldspot) a signal score which is the average signal value
over all the bins of this hotspot (coldspot). Various histone
modification data can be considered as different features for
us to predict hotspots and coldspots.

Recently, PRDM9 has been identified as a trans-regulator
of recombination hotspots in both human and mouse [3, 21,
23] and its binding site contains a 13-mer motif which is en-
riched in human hotspots, i.e., covering about 41% of human
hotspots [22]. Therefore, the binding preference of PRDM9
to hotspots may help us to predict whether a sequence is a
hotspot or coldspot based on the binding affinity of PRDM9
to the sequence. Meanwhile, our predicted tran-regulators
such as MYC, SP1, CTCF and so on, have the similar bind-
ing preference to hotspots as PRDM9. As such, we will take
the binding information of these trans-regulators as another
subset of features for predicting recombination hotspots.

In addition, many other genomic features are related to re-



combination hotspots. For example, hotspots are generally
accompanied with local increases of GC contents [25, 26].
Sequences with the potential to form non-B DNA structures
are associated with the recombination activity [6]. In this
paper, we also integrate the GC contents of the given se-
quences to identify their propensity to be hotspots.

After collecting the above features, each sequence will be
associated with a vector (f1, f2, ..., fl) where fi (i = 1, 2,
..., l) is the ith feature value, e.g., the average signal of his-
tone modifications, binding information of trans-regulators
or the percentage of GC content. Subsequently, we will ap-
ply support vector machines (SVM) to classify the given
sequences to be hotspots or coldspots. SVM [27] is a state-
of-the-art classification technique in machine learning and it
has been proven to be one of the best classifiers in many ap-
plication domains such as text categorization, image recog-
nition, protein function prediction [2], and so on. It will
find a maximum-margin hyperplane between the instances
of the two classes. For non-linearly separable classification
problems, SVM will use kernel functions to map the feature
vectors into a higher dimensional feature space to obtain
non-linear boundaries.

3. RESULTS
3.1 Data
We downloaded the mouse recombination hotspots from [25],
which were detected by chromatin immunoprecipitation fol-
lowed by high-throughput sequencing (ChIP-seq). There are
9,874 hotspots in mouse genome and the average hotspot
width is 3414.08 bases. Human recombination hotspots here
are collected in a manner different from mouse hotspots.
They are computationally inferred from SNP data as the
peaks of the recombination rate profile estimated by the LD-
hat package [20]. As such, we finally collected 39,551 human
hotspots with width less than 6k bases. DNA sequences for
mouse (version: MGSCv37) and human (version: GRCh37)
were downloaded from NCBI.

The binding motifs of TFs were collected from JASPAR [24]
and TRANSFAC [19]. After processing, we obtained 158 hu-
man binding motifs and 148 mouse binding motifs respec-
tively. The histone modification data were downloaded from
UCSC genome browser. In addition, the data for GO term
analysis were downloaded from http://www.geneonto-
logy.org.

3.2 GO term conservation for trans-regulators
Here, we apply the method in subsection 2.1 to human and
mouse TFs and then compare the top list of TFs between
the two species. Human TFs with odds ratio score at least
1.2 are selected similarly as in [30] to form the gene set HG.
As such, HG consists of 29 TFs in human and 40 TFs in
mouse respectively. Table 2 shows the GO terms enriched in
human HG (the GO term enrichment in mouse HG genes
is similar and not shown here). We can find that epigenetic
terms, such as histone acetylation, histone methylation (i.e.,
H3K4 and H3K9 methylation), histone deacetylation and
chromatin modification, are enriched in both human and
mouse HG TFs. Our observation on GO term conservation
shows the epigenetic regulatory mechanism for recombina-
tion hotspots is conserved between human and mouse.

For the above human and mouse HG TFs, their intersection
identified 11 ortholog pairs as shown in Table 1. For these
orthologs, Table 3 shows their GO term enrichment based on
the gap scores. In Table 3, those epigenetic terms are more
enriched with higher gap scores in those conserved orthologs
than in all those HG TFs. Take the term GO:0016568
(chromatin modification) as an example. In Table 3, it is
ranked as the first with the highest gap score 0.307, much
higher than its gap score 0.119 in human HG. Meanwhile,
the term GO:0007126 (meiosis), which is directly related to
meiotic recombination hotspots, is enriched in human or-
thologs while not enriched in human HG TFs. As such,
the orthologs in both human and mouse as shown in Table 3
are more associated with recombination hotspots than those
trans-regulators predicted in individual species.

Table 1: Orthologs in human and mouse HG TFs.
Orthologs Odds ratio in human Odds ratio in mouse
MYC 1.489 1.689
USF1 1.397 1.619

PRDM9 1.386 1.630
TP53 1.275 1.230
CTCF 1.247 1.336
PAX5 1.238 1.289
SP1 1.232 1.430
ZIC2 1.228 1.205
JUN 1.225 1.263
ESR1 1.207 1.286
ARNT 1.203 1.516

We will next utilize the binding information of these 11 pro-
teins in Table 1 as features. Meanwhile, there are 10 different
kinds of histone modifications under 3 different cell lines for
human. Thus, we have 30 features from histone modifica-
tions for human. Similarly, we have 20 features from histone
modifications for mouse. Together with the feature of GC
content, we finally have 42 features for human and 32 for
mouse to build the classification model.

3.3 Cross-validation for individual chromosomes
Both linear SVM and SVM with Gaussian kernels (RBF ker-
nel) have been used in our experiments (using SVMlight soft-
ware [15]). Two evaluation metrics are used to measure the
performance of SVM for predicting hotspots and coldspots,
i.e., AUC and Accuracy. AUC is the area under the Receiver
Operating Characteristics (ROC) curve, which is a graph-
ical plot of the sensitivity vs. 1-specificity for a classifier
as the decision threshold varies. Accuracy is the fraction of
instances that are correctly predicted, i.e., (TP + TN) /
N where TP is the number of true positives (correctly pre-
dicted as positives), TN is number of true negatives and N
is the total number of instances for prediction.

Figures 2 and 3 show the cross-validation results of SVM
on the hotspots and coldspots from individual chromosomes
of human and mouse (i.e., intra-chromosome validation), re-
spectively. For example, there are 5,906 instances including
hotspots and coldspots on human chromosome 1. By con-
ducting a 5-fold cross-validation on human chromosome 1,
the AUC and accuracy of SVM with RBF kernels are 0.866
and 0.779 respectively and those of SVM with linear kernel



Table 2: GO terms enriched in human HG(with top 15 gap scores).
Rank GO terms GO term descriptions gap
1 GO:0051573 negative regulation of histone H3-K9 methylation 0.153
2 GO:0031060 regulation of histone methylation 0.146
3 GO:0035065 regulation of histone acetylation 0.144
4 GO:0006337 nucleosome disassembly 0.143
5 GO:0016573 histone acetylation 0.136
6 GO:0051574 positive regulation of histone H3-K9 methylation 0.134
7 GO:0051571 positive regulation of histone H3-K4 methylation 0.132
8 GO:0045947 negative regulation of translational initiation 0.131
9 GO:0031065 positive regulation of histone deacetylation 0.125
10 GO:0006334 nucleosome assembly 0.124
11 GO:0016568 chromatin modification 0.119
12 GO:0035066 positive regulation of histone acetylation 0.118
13 GO:0042986 positive regulation of amyloid precursor protein biosynthetic process 0.117
14 GO:0006338 chromatin remodeling 0.111
15 GO:0032348 negative regulation of aldosterone biosynthetic process 0.11

Table 3: GO terms enriched in the orthologs as shown in Table 1, based on the GO annotations for human
genome (with top 15 gap scores).

Rank GO terms GO term descriptions gap
1 GO:0016568 chromatin modification 0.307
2 GO:0051574 positive regulation of histone H3-K9 methylation 0.302
3 GO:0016573 histone acetylation 0.3
4 GO:0051573 negative regulation of histone H3-K9 methylation 0.3
5 GO:0051571 positive regulation of histone H3-K4 methylation 0.297
6 GO:0006338 chromatin remodeling 0.294
7 GO:0031060 regulation of histone methylation 0.288
8 GO:0035066 positive regulation of histone acetylation 0.278
9 GO:0031065 positive regulation of histone deacetylation 0.273
10 GO:0035065 regulation of histone acetylation 0.273
11 GO:0007126 meiosis 0.262
12 GO:0045799 positive regulation of chromatin assembly or disassembly 0.26
13 GO:0016584 nucleosome positioning 0.254
14 GO:0006334 nucleosome assembly 0.245
15 GO:0006337 nucleosome disassembly 0.239

are 0.748 and 0.688 respectively. Table 4 shows the average
AUC and accuracy of SVM for intra-chromosome validation.

From Figure 2 and Table 4, we can observe that the kernel
trick are quite effective for predicting human hotspots. For
example, SVM with RBF kernel has the AUC 0.812, which
is 9.1% higher than the AUC of linear kernel (0.721). Sim-
ilarly, the accuracy of SVM on human hotspots can also be
improved by the RBF kernel. This indicates that the fea-
tures for human hotspots have complicated associations with
each other, in which case sophisticated boundaries generated
by the RBF kernel could perform better than linear ker-
nel. However on mouse chromosomes, linear kernel achieves
higher AUC and accuracy than RBF kernel. Possible rea-
sons could be that we have more features for human (i.e., 30
histone modification features for human vs. 20 for mouse)
and the relationship among human features may be more
complicated than those of mouse. As such, the kernel tricks
are more effective for predicting human hotspots than for
mouse. In addition, the good performance of SVM (e.g., the
AUC of SVM with RBF kernel on human chromosomes 1
and 15 can achieve up to 0.86 and the average AUC of RBF

kernel is 0.812 over all the human chromosomes), demon-
strates that the features we used here, including histone
modification data, binding information of trans-regulators
and GC contents, are indeed highly related with recombi-
nation hotspots. It can be reasonably expected that the
performance of SVM (or other classifiers) can be further im-
proved by integrating more genetic and epigenetic features
in the future.

3.4 Inter-chromosome validation
In the previous subsection, we showed the cross-validation
results for each individual chromosome. In fact, those are
intra-chromosome validation results—training the SVM on
some instances in a chromosome and testing on some other
instances in the same chromosome. In this subsection, we
will show the results of inter-chromosome validation, i.e.,
training on the instances in one chromosome and testing on
the instances in all the other chromosomes.

Figures 4 and 5 show the inter-chromosome validation re-
sults for human and mouse, respectively. For example, when
training SVM with RBF kernel on human chromosome 1 and



Table 4: AUC and accuracy of SVM for various kinds of validations.
Intra-chromosome validation Inter-chromosome validation Genome-wide validation
AUC Accuracy AUC Accuracy AUC Accuracy

Human
Linear 0.721 0.655 0.640 0.583 0.680 0.621
RBF 0.812 0.735 0.657 0.597 0.815 0.736

Mouse
Linear 0.720 0.653 0.703 0.643 0.739 0.650
RBF 0.699 0.642 0.686 0.633 0.722 0.664
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Figure 2: Intra-chromosome validation: AUC and
accuracy of SVM on each chromosome of human.
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Figure 3: Intra-chromosome validation: AUC and
accuracy of SVM on each chromosome of mouse.

testing on all the other chromosomes, the average AUC and
accuracy are 0.656 and 0.613 respectively as shown in Fig-
ure 4. Table 4 also includes the average inter-chromosome
validation results over all the chromosomes. It is interesting
that intra-chromosome validation results for human are bet-
ter than its inter-chromosome validation results while for
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Figure 4: Inter-chromosome validation: AUC and
accuracy of SVM for human.
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Figure 5: Inter-chromosome validation: AUC and
accuracy of SVM for mouse.

mouse they are quite similar. A possible reason could be
that the feature distributions (or even the mechanisms) for
hotspots on different chromosomes may be different for hu-
man while they are more consistent for mouse. Meanwhile,
SVM with RBF kernel still achieve better performance than
linear kernel for predicting human hotspots. We speculate



that those features for human recombination hotspots have
more complicated interactions and exploring those relation-
ships would be our future studies.

3.5 Genome-wide validation
We also conducted the genome-wide validation for both hu-
man and mouse. Genome-wide validation means that we
randomly select the training instances from all the chromo-
somes (i.e., genome-wide selection of training samples) and
then test on the remaining instances. Table 4 also shows the
average AUC and accuracy of SVM for genome-wide valida-
tion.

As discussed previously, the mechanisms for hotspots on dif-
ferent human chromosomes may be different. Therefore, we
can expect that the genome-wide validation results will be
a tradeoff between intra- and inter-chromosome validation
results. The accuracy and AUC of SVM with linear kernel
in the genome-wide validation also confirm the above hy-
pothesis. However, RBF kernel still achieves a high perfor-
mance in human genome-wide validation, which once again
indicates the complicated interactions among human fea-
tures. Meanwhile, mouse hotspots have consistent mecha-
nisms over different chromosomes. Hence, the performance
of the genome-wide validation is better than those of intra-
and inter-chromosome validation as shown in Table 4.

3.6 Feature importance analysis
After training linear SVM, the absolute values of the feature
weights show the importance of these features [10], i.e., the
larger |wj | is, the more important role the jth feature plays in
predicting hotspots. Figure 6 shows the importance of com-
mon features between human and mouse. We find that the
trained models in human and mouse (i.e., the correlation of
the feature importance) are highly correlated. For example,
the Pearson correlation coefficient between the two feature
importance vectors is 0.673 with a low p-value 0.003. This
demonstrates that a common feature between human and
mouse play similar roles in predicting hotspots, indicating
that the major determinants for recombination hotspots are
evolutionarily conserved.

00.511.522.53 Human Features Mouse Features

Figure 6: Importance scores of 17 common features
between human and mouse.

In Figure 6, the top 5 important features for both human and
mouse are H3K27me3, H3K36me3, H3K79me2, the binding
information of PRDM9 and GC contents. For GC contents,

our results are consistent with the fact that they are closely
related to recombination hotspots [25, 26]. PRDM9, the
major trans-regulator for recombination hotspots, plays an
important role for predicting hotspots in our experiments,
as expected. Furthermore, it is a novel discovery that the
histone modifications have such a high impact for the pre-
diction. This discovery once again confirms the epigenetic
regulatory mechanisms for recombination hotspots.

In a recent study, H3K4me3 was observed to be enriched
in mouse hotspots [25], i.e., 94% of mouse hotspots overlap
with peaks of H3K4me3 signals. However, most of these
enriched regions in hotspots are not transcription promot-
ers which have even higher H3K4me3 signals. As such,
H3K4me3 signals are believed to be insufficient for predict-
ing hotspots [18]. Interestingly, the importance of H3K4me3
in Figure 6 is moderate, which is consistent with this point
[18].

4. DISCUSSIONS AND CONCLUSIONS
In this paper, we first predict transcription factors with high
binding preference to recombination hotspots as their trans-
regulators. Subsequent GO term analysis provides insights
into the epigenetic regulatory mechanisms for recombina-
tion hotspots. Inspired by this discovery, we integrate epige-
netic and genetic data as the features of sequences and build
classification models (SVM with linear and RBF kernels)
to computationally predict recombination hotspots. With
the limited number of features used, the intra- and inter-
chromosome validations show good performance, demon-
strating our collected epigenetic and genetic features are
highly associated with recombination hotspots. In addition,
the absolute values of the feature weights learned by lin-
ear SVM indicate the relative importance of these features.
The vectors of feature importance for human and mouse are
highly correlated with respect to Pearson correlation. That
is, a common feature between human and mouse play similar
roles in predicting hotspots, showing the existence of evolu-
tionarily conserved mechanisms for recombination hotspots.

In the future, an importance issue is to investigate the asso-
ciations among various features with respect to recombina-
tion hotspots. For example, mouse PRDM9 DNA-binding
specificity determines the sites of H3K4me3 [9]. This would
help us to better understand the inherent mechanisms for
recombination hotspots. We are also going to explore more
features for both human and mouse, e.g., DNA quadru-
plex data and more epigenetic data (e.g., DNA methyla-
tion data). As more data are integrated, our classification
model is expected to be more powerful and accurate to pre-
dict recombination hotspots. In addition, the difference in
regulatory mechanisms of recombination hotspots between
human and mouse as suggested by our results would be an
interesting topic worth investigation.
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