
Integration of Epigenetic Data in Bayesian
Network Modeling of Gene Regulatory Network

Jie Zheng1, Iti Chaturvedi1, Jagath C. Rajapakse1,2,3

1Bioinformatics Research Centre, School of Computer Engineering, Nanyang
Technological University, Singapore 639798

2Department of Biological Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02142, USA

3Singapore-MIT Alliance, Singapore
{zhengjie,iti,asjagath}@ntu.edu.sg

Abstract. The reverse engineering of gene regulatory network (GRN)
is an important problem in systems biology. While gene expression data
provide a main source of insights, other types of data are needed to elu-
cidate the structure and dynamics of gene regulation. Epigenetic data
(e.g., histone modification) show promise to provide more insights into
gene regulation and on epigenetic implication in biological pathways. In
this paper, we investigate how epigenetic data are incorporated into re-
construction of GRN. We encode the histone modification data as prior
for Bayesian network inference of GRN. Bayesian framework provides
a natural and mathematically tractable way of integrating various data
and knowledge through its prior. Applying to the gene expression data
of yeast cell cycle, we demonstrate that integration of epigenetic data
improves the accuracy of GRN inference significantly. Furthermore, fu-
sion of gene expression and epigenetic data shed light on the interactions
between genetic and epigenetic regulations of gene expression.
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1 Introduction

Reconstruction of gene regulatory networks (GRN) is one of the most important
problems in systems biology. Despite intense research, there remain many open
problems in this area, partly due to the limited data available and the inherent
noise and complexity of biological processes. On the other hand, thanks to the
advances on data collection technologies such as next generation sequencing, new
types of biological data are emerging, providing new insights and opportunities
for GRN reconstruction.

Among the new data, epigenetic data are receiving more attention recently.
Epigenetics is the study of changes in phenotypes (especially gene expression)
caused by mechanisms other than the changes in DNA sequences (due to mech-
anisms of central dogma of molecular biology). Such data come from various
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epigenetic processes, such as histone modification, DNA methylation, interfer-
ences by micro RNA, etc. It is believed that epigenetic control of gene expression
represents an important layer of regulation beyond genes in DNA sequences.
Analogous to genetic code for gene translation, it is hypothesized that there is
an ”epigenetic code” for controlling gene expression. The decoding of ”epigenetic
code” and an increased understanding of the mechanisms of epigenetic regulation
of gene expression will bring about new breakthroughs in systems biology and
translational medicine. For instance, epigenetic regulation plays an important
role in the development of embryonic stem cells, as well as in reprogramming of
induced pluripotent stem cells.

Nevertheless, the mechanisms of epigenetic regulation of gene expression re-
main poorly understood. To elucidate the interaction between genetic and epige-
netic regulation of transcription, there is a need for incorporation of epigenetic
information in the gene regulatory networks. This paper is motivated by our
belief that by considering epigenetic information, the accuracy of GRN recon-
struction can be improved. Furthermore, it will shed light on the interactions
between genetic and epigenetic regulations.

Recently, there have been some attempts to infer causal relations between
epigenetic features (especially histone modifications) and gene expression, and to
elucidate the ”epigenetic code”. Yu et al. built a Bayesian network to model the
combinatorial relationships among histone modifications and their effects on gene
expression [1]. Cheng et al. gave a machine learning framework to predict gene
expression from chromatin features [2]. They observed that chromatin features
contribute a significant proportion of gene expression variation. The two papers
both looked at the ”global” effects of epigenetic features on gene expression while
it is desirable to study the effects on individual genes. In particular, it would be
highly interesting to examine what patterns occur in epigenetic features between
a regulatory gene and its regulated gene. Ha et al. [3] used gene ontology analysis
on plant genes to show that genes tend to have similar distribution patterns of
histone modifications in the same functional classes but have different epigenetic
patterns across different classes. This observation implies that genes involved in
the same regulatory pathways have similar patterns of epigenetic features. Thus,
the correlation of epigenetic feature distribution among genes can be used as
additional information for the reconstruction of GRN.

There are mainly four types of approaches to GRN modeling, namely, infor-
mation theory models, Boolean networks, differential equations, and Bayesian
networks (see the review of [4] and references therein). Among the approaches,
Bayesian networks have been the most mature framework for integration of het-
erogeneous data although analogous integration methods are being developed for
other approaches as well. The Bayesian strategy of integration is realized by pre-
senting additional information in the form of prior probability of network. This
strategy has been developed to increase the accuracy of GRN reconstruction
[5],[6]. The prior knowledge includes protein-protein interactions, transcription
factor-DNA binding, sequence motifs, pathways, literature mining, etc. However,
to our knowledge, no epigenetic features have been integrated in this framework.
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In this paper, we integrate epigenetic features as prior knowledge in Bayesian
network learning, based on the framework outlined in [6]. This approach is ap-
plied to gene expression data in [7] and histone modification (ChIP-Chip) data
in [8] from the yeast genome. We first show that the histone modification profiles
between regulators and target genes are more strongly correlated than a random
pair of genes. Second, by comparing with benchmark regulatory networks iden-
tified from experiments [9], we demonstrated that the use of epigenetic prior can
improve sensitivity by more than 10%. Interestingly, it is also observed that his-
tone modification data alone can be used to infer GRN with lower false positive
than using gene expression data. To the best of our knowledge, this is the first
use of epigenetic information for the reverse engineering of GRN.

2 Methods

Bayesian network has long been used for GRN reconstruction. One of the strengths
of Bayesian network is its ability to incorporate additional knowledge through
the priors. In the following we will describe the construction of prior matrix B
from epigenetic data of histone profiles obtained from [8].

The histone profiles of each gene i consist of a matrix Hi = {hi
l,h}t×m of

positive float numbers, where m is the number of histone types and t is the
number of loci assessed for the gene. Each row of Hi corresponds to a genomic
locus near or within the gene (e.g. promoter, middle of transcribed region, etc.);
each column of Hi corresponds to a type of histone modification (e.g. histone H3
lysine 9 acetylation (H3K9ac), histone H3K4 trimethylation (H3K4Me3), etc.).
That is, hi

l,h represents the enrichment of the hth histone modification at the

lth measured locus of gene i. Thus the genome wide histone dataset in [8] is
represented as a 3-dimensional matrix H = [Ht]

n
t=1 , where n is the number of

genes.
To simplify analysis, for each gene we calculate the average enrichment of

a histone type across t different loci of a gene, and obtain a vector of m float
numbers each measuring the level of a certain type of histone modification.
These vectors of histone features represent the epigenetic information of genes.
Formally, the vector fi of histone features is calculated for gene i as

fi =
1

t

[
τ∑

l=1

hi
l,l

τ∑
l=1

hi
l,2 . . .

τ∑
l=1

hi
l,m

]
(1)

Following [6], we define the biological prior knowledge matrix B = {bi,j}n×n

as follows. Let matrix element bi,j ∈ [0.0, 1.0] represent the correlation between
the histone modification patterns of gene i and gene j. If bi,j = 0.5, we do not
have any prior knowledge about the presence or absence of the edge (i, j); if
bi,j < 0.5, we have prior evidence of the absence; if bi,j > 0.5, we have prior
evidence of the presence of the edge. For more details, please see [6] and [5].

To estimate the epigenetic association between gene i and gene j, bi,j is
defined by using the Pearson correlation coefficient ρ between the epigenetic
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profiles of the two genes. While ρ is a number between -1 and 1, the Bayesian
prior need to be between 0 and 1. Hence, we scale to between 0 and 1 linearly
to define the Bayesian prior for epigenetic features as

bi,j =
1

2
[ρ(fi, fj) + 1] (2)

Then, we integrate the priors in B matrix into Bayesian network learning as
follows. To construct a gene network G that fits the data the best, the posterior
probability of the network is maximize

P (G|D) ∝ P (D|G)P (G) (3)

where P (G) is the prior probability of network G. Let matrix C = {ci,j}n×n

be the connectivity matrix of the GRN G, i.e. ci,j = 1 if the edge (i, j) is present
in G and ci,j = 0 otherwise. Following [6], the energies associated with the
presence and absence of edges are defined as

E(G) =
n∑

i,j=1

|bi,j − ci,j | (4)

Then, the prior probability P (G) is modeled by the Gibbs distribution

P (G) =
1

Z
e−βE(g) (5)

Here Z is a normalizing partition function defined as

Z =
∑
G∈S

e−βE(g) (6)

where S is the set of all possible GRNs, and β is a positive number as hyper
parameter. To find networks of high posterior probabilities, we search for edges
that minimize the energy E(G), thus taking into account the prior knowledge in
matrix B.

There are many heuristic and stochastic algorithms for learning Bayesian
networks: e.g., genetic algorithms, simulated annealing, Markov Chain Monte
Carlo, etc. Since our goal is to integrate epigenetic prior knowledge to improve
the accuracy of GRN reconstruction and the effect of a good prior approach
should be independent of specific learning algorithms used, we choose a greedy
learning algorithm for the present study. As a future work, other structure learn-
ing algorithms will be explored.

Starting from a random network (i.e. the entries in the connectivity matrix
C are initialized to 0’s and 1’s at random), the algorithm searches for networks
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with good fitness with the given data, through iterations of the following two
basic steps: (1) make local change to an existing network by adding, deleting or
replacing edges to generate a new network; (2) evaluate the posterior probability
as the score of the proposed network. If the score is improved by local change in
step (1), then the new network is accepted; otherwise it is rejected. The above
two steps are iterated until some stopping criteria are met, e.g., the maximum
running time or the maximum number of iterations are reached. The prior prob-
abilities serve as weights in the evaluation of posterior probability of a proposed
network. The result consists of a set of network structures (i.e. directed edges)
and their corresponding posterior probability scores. In the end, the network
with the highest score is output.

3 Experiments and Results

The above method was implemented as a Python program based on the open
source library of Pebl [10]. Compared with other implementations of Bayesian
network inference, a unique feature of Pebl is to allow easy implementation of
soft prior constraints in the form of an energy matrix. However, Pebl is limited
to static Bayesian networks and can handle only networks of small number of
nodes. Here, we used the greedy learning algorithm implemented by Pebl.

First we use real data to show that the epigenetic profiles are more corre-
lated between a regulatory pair of genes than a random pair. To this end, we
downloaded a list of 87 confirmed regulator-gene interactions [11] and the hi-
stone modification profiles [8], both in the yeast genome (S.cerevisiae). There
are totally 88 genes in the confirmed list, out of which 85 genes have histone
profiles available, as shown in Figure 1. We did not use the edges in Figure 1 for
verification because these are confirmed regulatory interactions but they do not
represent a complete regulatory network (e.g. there is no feedback loop) .

The energy values of the 87 edges in the confirmed regulator-gene interactions
as in Figure 1 are compared with the energy values of 87 random pairs of genes.
As shown in Figure 2, the confirmed regulatory edges have significantly higher
energy values (box on the right) than random edges (p-value < 0.01).

The result of Figure 2 shows that epigenetic information correlates with reg-
ulatory relationships, which supports our approach of using histone features as
prior knowledge in Bayesian network inference. To further verify this approach,
we compare Bayesian network algorithms with and without the energy matrix
from histone profiles on an experimentally identified regulatory network (Figure
3) consisting of 9 genes related with yeast cell cycle [9].

The greedy algorithm as described in Section 2 for static Bayesian network
inference is applied on the expression data of yeast cell cycle [7], with and without
the prior of histone data. Moreover, we apply our method on histone data only.
For each method, we compare the predicted edges and the established edges
as in Figure 3, taking into account the edge directions. True positive (FP) is
counted as the number of predicted edges matching the established edges (i.e.
with the same end nodes and direction) and similarly for false positive (FP) and
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Fig. 1. Confirmed edges of regulator-gene interactions in yeast cell cycle.

false negative (FN). Since there are 9 nodes and edge directions are taken into
account, the true negative (TN) should be 72 - (FP+FN+TP).

As shown in Table 1, in Experiment A, only expression data and no prior
is used; in Experiment B, only histone profiles are used as input to Bayesian
network inference; in Experiment C, both expression data and histone prior are
used. The result of C has the highest sensitivity, and compared with result of A
the use of prior in C improved the sensitivity by more than 10%. The specificity of
C is slightly lower than A due to one more false positive. Interestingly, when only
histone data are used, the specificity is the highest among the three experiments.
The histone data, when used alone, can reduce FP to 23; however, when used
as prior with gene expression in experiment C, both FP and TP increase.

Now, let us look at the predicted GRNs from the three experiments more
carefully. As shown in Figure 4, a big fraction of false negative edges in exper-
iment A are due to wrong predicted directions (the T-shaped lines), while in
experiment B there are more missing edges (dashed lines). Note that several
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Fig. 2. Comparison between the energy values of random pairs of genes vs. confirmed
pairs of genes in yeast (Wilcoxon test p-value < 0.01).

Table 1. Comparison of predicted networks with the benchmark network in three
experiments. It shows the improvement of Bayesian network performance due to the
use of epigenetic data as prior.

Experiment TP TN FP FN Sensitivity(%) Specificity(%)
A. Expression 5 26 29 12 29.41 47.27
B. Histone 4 32 23 13 23.53 58.18

C. Expression & histone 7 25 30 10 41.18 45.45

edges missed in experiment A have been detected in experiment B (e.g. FKH2
to SWI5, MCM1 to SWI5), and vice versa. This may explain why the result of
experiment C, considering both gene expression and histone data, has a higher
sensitivity than the other two experiments. To elucidate the effect of epigenetic
data on the performance of GRN inference, however, larger datasets and net-
works will be needed.

4 Conclusion

In this paper, we proposed to integrate epigenetic data as prior knowledge of
Bayesian network model for reconstruction of GRN. The approach has been
applied to gene expressions of cell cycle and histone modification data of yeast
genome. First, it was shown that the correlation of histone modification features
between genes with experimentally confirmed regulatory-target gene pairs are
stronger than the correlation between random pairs of genes. This suggests that
histone features are associated with gene regulatory relation, and hence supports
the rationale of our approach. Second, we demonstrated that histone data can
also be used to reconstruct regulatory networks with performance comparable
to gene expression data. Third, as demonstrated on an experimentally verified
network from yeast cell cycle data, epigenetic prior improves the accuracy of
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Fig. 3. The gene regulatory network of yeast cell cycle identified in [9].

Bayesian network inference GRN. As far as we know, this is the first paper
to reconstruct GRN by incorporating histone modification data, which shows
promise for pursuing further research.

However, as this is only a preliminary study in this direction, there remains
much room for improvement. The major goal of this paper is to show that the
fusion of gene expression with epigenetic data can improve the accuracy of GRN
reconstruction. This goal has been achieved with the straightforward methods
of GRN reconstruction and Bayesian integration [6]. It is desirable to develop
data fusion approaches for more sophisticated GRN reconstruction methods un-
der more realistic conditions in the future. For instance, one can implement a
similar prior for dynamic Bayesian network (DBN) which is more compatible
with the time-course gene expression data of yeast cell cycle than the static
BN used here. Due to scalability of the greedy algorithm of Pebl, the accuracy
is relatively low. More powerful learning algorithms with higher computational
efficiency will be implemented. Then we can test the approach on larger expres-
sion and epigenetic datasets and benchmark networks. Despite the promising
results in this paper, our model of epigenetic information is quite simplified, and
we should model more realistic relations. For example, the two types of epige-
netic data (i.e., histone acetylation and histone methylation) which we integrated
here actually have different enrichment patterns along genes: acetylation tends
to be enriched at the beginning of genes and methylation tends to be within
transcribed regions. There are also combinatorial interactions among histone
themselves, which has been modeled also using Bayesian network [1]. In this
study we have performed the validation of our method only on a small network
(Figure 3). This is mainly because of two reasons : (1) only a few experimentally
verified GRNs are available so far due to the difficulty of GRN reconstruction
and complexity of data; (2) we need to benchmark GRNs that have also high-
throughput epigenetic information. It is still difficult to find a benchmark data
that satisfy both criteria (i.e. experimentally verified and with epigenetic data).
An important future work is to look for more such data, which can be used for
either method evaluation or exploratory data analysis. Last but not least, as
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(c)

Fig. 4. BN modelling (a) Gene expression data only (b) Histone data only (c) Expres-
sion and histone data

there are only a few gold-standard GRNs available, one can experiment with
synthetic networks and data taking into account epigenetic regulation.
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